从HR到技术博主:用Python打造疫情数据可视化工具(附实战代码)
在人力资源领域摸爬滚打多年,我深知数据的力量。曾经,我为了整理一份员工健康报告,手动收集各部门数据,耗时整整一周,还因数据不准确被领导批评。直到我发现了Python,用它实现数据自动化处理,如今只需几分钟就能完成。这个转变让我意识到,技术不仅能提升效率,还能为HR工作带来全新的视角。
代码核心价值解析
今天要分享的脚本是一个疫情数据可视化工具。它通过爬取疫情数据,生成直观的图表,帮助我们快速了解疫情动态。以下是代码的核心部分:
def get_chart(country):
"""To plot the growth graph based on the country"""
info = get_data("https://pomber.github.io/covid19/timeseries.json")
df = DataFrame(info[country])
figure = Figure(figsize=(5, 5), dpi=90)
subplot = figure.add_subplot(111)
subplot.plot(df['date'], df['confirmed'], label='confirmed', color='blue')
subplot.plot(df['date'], df['deaths'], label='deaths', color='red')
subplot.plot(df['date'], df['recovered'], label='recovered', color='green')
subplot.legend(loc='upper left')
canvas = FigureCanvasTkAgg(figure, master=frame_stat)
canvas.get_tk_widget().grid(row=4, column=0, columnspan=3, sticky="wen", padx=20, pady=5)
这段代码的核心是通过get_data
函数获取疫情数据,然后利用DataFrame
和matplotlib
生成图表。它将复杂的疫情数据转化为直观的可视化图形,帮助我们快速理解疫情的发展趋势。
用Mermaid语法绘制代码执行流程图如下:
核心代码价值分析如下:
✅ 三维价值评估
- 时间收益:从手动整理数据到一键生成图表,每次节省数小时,年省数百小时。
- 误差消除:避免手动输入数据导致的错误,确保数据准确。
- 扩展潜力:通过修改数据源和图表类型,可轻松扩展为其他数据可视化工具。
✅ HR专业视角
该脚本实质是“数据可视化”的技术映射,如:
- 自动化处理 ≈ 组织流程再造
- 异常检测 ≈ 员工行为分析
- 日志记录 ≈ 绩效考核追溯
关键技术解剖台
数据可视化的跨界解读
▍HR眼中的技术价值
对应人力资源管理中的“绩效管理”,解决“数据呈现不直观”的痛点。通过可视化图表,HR可以更清晰地展示员工绩效数据,为绩效评估提供有力支持。
▍工程师的实现逻辑
subplot.plot(df['date'], df['confirmed'], label='confirmed', color='blue')
subplot.plot(df['date'], df['deaths'], label='deaths', color='red')
subplot.plot(df['date'], df['recovered'], label='recovered', color='green')
技术三棱镜
- 原理类比:多线程≈跨部门协作,通过并行处理提高效率。
- 参数黑盒:
color
参数相当于HR工具中的“标签分类”,用于区分不同类型的数据。 - 避坑指南:
label
参数必须与数据列名一致,否则会出现“标签错误”的问题,如同HR在绩效评估中混淆了员工姓名。
▍复杂度可视化
扩展应用场景
场景迁移实验室
案例1:疫情数据可视化→员工健康数据可视化改造指南
# 关键参数替换公式
info = get_data("https://company_health_data.json") # 替换数据源
df = DataFrame(info['employee_health']) # 替换数据列
▶️ 改造收益:解决员工健康数据分散、难以管理的问题。
案例2:疫情数据可视化+市场趋势分析跨界融合
# 组合技实现方案
market_data = get_data("https://market_trend_data.json") # 获取市场趋势数据
df['market_trend'] = market_data['trend'] # 添加市场趋势列
subplot.plot(df['date'], df['market_trend'], label='market_trend', color='purple') # 绘制市场趋势图
▶️ 创新价值:结合疫情数据和市场趋势,为企业决策提供更全面的参考。
总结
这个脚本通过爬取疫情数据并生成可视化图表,帮助我们快速了解疫情动态。它不仅节省了时间,还提高了数据准确性。这个案例的完整源码已开源在我的GitCode仓库,可自行搜索下载。不会玩GitCode仓库的,可到这里下载:https://pan.quark.cn/s/654cf649e5a6,提取码:f5VG。
长期主义宣言
本脚本v1.0虽简陋,却是持续迭代的起点:
- 2021:基础功能版(解决有无问题)
- 2022:异常处理版(增加稳定性)
- 2023:GUI交互版(降低使用门槛)
- 2024:AI增强版(接入LLM智能分析)
希望这篇文章能帮助你更好地理解和应用Python技术,无论是提升工作效率,还是开启自媒体副业,都能成为你的“生产力乐高积木”。如果你有任何问题或想法,欢迎在评论区留言,我们一起交流。