场景故事:HR转型的契机
在人力资源岗位摸爬滚打 5 年后,我遭遇了职业瓶颈。日常事务性工作占据大量时间,招聘、员工关系、薪酬核算等流程虽熟悉,但创新突破难。一次偶然机会,我接触 Python 爬虫,发现其能自动化采集数据,这不正是优化 HR 数据分析的利器吗?于是开启学习之旅,从爬虫基础语法到实战应用,逐渐掌握技能。当用爬虫采集招聘网站数据并分析人才市场趋势时,成就感油然而生,也坚定了转型自媒体的决心,如今已持续输出技术文章两年,粉丝超 5 万。
核心代码价值解析
以下为爬虫脚本核心部分,实现多页面书籍信息采集与存储:
import requests
from bs4 import BeautifulSoup
import csv
Book_name = []
Year = []
Publisher = []
Author = []
for j in range(1, 11):
source = requests.get(
f'https://1lib.in/s/data%20science?page={j}').text
soup = BeautifulSoup(source, 'lxml')
books = soup.find_all('table', attrs={'style': 'width:100%;height:100%;'})
for i in books:
# book name
try:
Book_name.append(i.find('h3').text.strip())
except Exception:
Book_name.append('nan')
# year
try:
Year.append(
i.find('div', class_='property_year').text.strip()[6:10])
except Exception:
Year.append('nan')
# publisher
try:
Publisher.append(
i.find('div', attrs={'title': 'Publisher'}).text.strip())
except Exception:
Publisher.append('nan')
# Author
try:
Author.append(i.find('div', class_='authors').text.strip())
except Exception:
Author.append('nan')
file_name = '500Datasciencebooks.csv'
with open(file_name, 'w') as file:
writer = csv.writer(file)
writer.writerow(['Sr.No', 'Book name', 'Publisher', 'Author', 'Year'])
for i in range(1, len(Book_name)):
writer.writerow([i, Book_name[i], Publisher[i], Author[i], Year[i]])
其流程如下:
graph TD
A[开始] --> B{循环访问1-10页}
B -->|获取页面内容| C[解析HTML结构]
C --> D[提取书籍信息]
D --> E{信息存储至列表}
E --> F[循环结束?]
F -->|是| G[将列表数据写入CSV文件]
从 HR 视角看,此脚本价值显著。时间收益方面,人工采集 10 页书籍信息需数小时,脚本运行仅需几分钟,按每周使用一次计算,一年节省超 100 小时。它消除因人工疏忽导致的信息不准确问题,如出版社名称错误等。还可改造为招聘数据采集工具,助力 HR 快速获取人才市场动态。
关键技术解剖台
Requests 模块的跨界解读
HR 眼中的技术价值
对应人力资源管理中的招聘模块,解决人才信息获取难题。以往依赖招聘网站手动搜索,效率低下且信息有限,如同使用 requests 模拟浏览器发送请求,能精准获取目标人才数据,拓宽招聘渠道。
工程师的实现逻辑
source = requests.get(
f'https://1lib.in/s/data%20science?page={j}').text
技术三棱镜:
- 原理类比:多线程发送请求 ≈ 跨部门协作同步获取不同板块数据
- 参数黑盒:超时参数(timeout)相当于招聘时间限制,防止请求过程过长影响效率
- 避坑指南:请求失败如同招聘渠道失效,需检查网址正确性、网络连通性,如同核查招聘网站账号状态、信息完整性
复杂度可视化
BeautifulSoup 模块的跨界解读
HR 眼中的技术价值
对应人力资源管理中的员工信息管理模块,解决数据提取与整理难题。员工信息分散在各类表格和文档中,利用 BeautifulSoup 解析 HTML 结构,精准提取数据,如同从繁杂的人事档案中快速定位关键信息。
工程师的实现逻辑
soup = BeautifulSoup(source, 'lxml')
books = soup.find_all('table', attrs={'style': 'width:100%;height:100%;'})
技术三棱镜:
- 原理类比:查找 HTML 标签 ≈ 在组织架构中查找特定部门或岗位信息
- 参数黑盒:解析器选择(如 lxml)相当于选择不同的人事信息处理工具,影响解析速度和准确性
- 避坑指南:标签找不到如同人事信息分类错误,需检查 HTML 文档结构、标签名称和属性准确性
复杂度可视化
扩展应用场景
场景迁移实验室
案例 1:办公自动化 → 财务自动化改造指南
# 关键参数替换公式
# 将书籍信息采集网址替换为财务数据相关网址,如:
# source = requests.get(
# f'https://financial-data.com/expense-report?page={j}').text
# 同时修改提取的数据字段,从书籍名称、出版社等改为费用类别、金额等
▶ 改造收益:解决财务人员手动收集和整理费用报销数据的繁琐问题,提高财务审核效率,减少因数据错误导致的财务风险。
案例 2:办公自动化 + 供应链自动化跨界融合
# 组合技实现方案
# 首先采集供应商信息
source_supplier = requests.get(
f'https://supplier-info.com/supply-chain?page={j}').text
soup_supplier = BeautifulSoup(source_supplier, 'lxml')
suppliers = soup_supplier.find_all('table', attrs={'class': 'supplier-table'})
# 提取供应商名称、联系方式、供应产品等信息
# 再与库存数据采集脚本结合
source_inventory = requests.get(
f'https://inventory-system.com/stock?page={j}').text
soup_inventory = BeautifulSoup(source_inventory, 'lxml')
inventories = soup_inventory.find_all('table', attrs={'class': 'inventory-table'})
# 提取库存数量、产品名称等信息
# 最后进行数据分析,实现供应链优化
▶ 创新价值:创造供应链信息整合与优化新价值,帮助供应链管理人员实时掌握供应商和库存动态,提前预测库存短缺,优化采购计划。
总结
上述完整爬虫脚本可采集多页面数据科学书籍信息并存储为 CSV 文件,应用场景广泛。无论是办公自动化、数据分析还是自媒体工具等领域,通过简单改造都能发挥巨大价值。其本质是利用 Python 技术实现信息收集与整理的自动化,为各行业提供数据支持。
源码获取
完整代码已开源,包含详细的注释文档:
🔗 [GitCode 仓库]https://gitcode.com/laonong-1024/python-automation-scripts
📥 [备用下载]https://pan.quark.cn/s/654cf649e5a6 提取码:f5VG