通用大模型(如DeepSeek、Qwen)虽具备广泛的知识覆盖和基础推理能力,但仍存在以下局限性:
(1)知识短板:难以覆盖细粒度、动态更新的事实(如罕见病治疗方案、最新指南);
(2)逻辑薄弱:在复杂推理链、反常识逻辑或伦理判断中表现不足;
(3)领域偏科:在医疗、金融等专业领域,需垂直模型辅助才能满足高精度需求。
通过大模型的知识注入——数据层注入(Prompt)、模型层注入(Finetune)、推理层注入(RAG),可显著提升模型在特定场景下的表现。
一、数据层注入(Prompt)
数据层注入——知识“拌饭法”
通过将领域知识或任务指令“拌入”输入提示中,使模型在无需修改结构的情况下吸收新知识,以极简方式引导模型生成精准响应。
(1)核心目标
以数据为载体,让模型在训练或推理时‘吃’到知识”,类似将调味料拌入米饭(数据)中。
(2)实现思路
数据层注入(知识“拌饭法”)就是我们常提到的提示词工程,使模型在无需结构修改的情况下吸收新知识。
就像你请朋友帮忙时需要说清楚“要做什么、怎么做、要什么结果”,提示词工程就是教大语言模型(LLM)如何理解你的需求,就是你给LLM的“任务说明书”。
(3)提示词工程(Prompt Engineering)
提示词工程大家再熟悉不过,每天都在使用。通过设计输入提示(Prompt),引导模型利用外部知识回答问题。
它就像“用对话技巧提升效率”——日常工作中,无论是让AI查资料时加限定条件,还是写报告时调整提问方式,本质上都是通过“优化输入”(数据层注入)来引导输出。
例如:设计包含领域知识的提示模板(如“根据《民法典》第XX条,该合同条款应______”)。
二、模型层注入(Finetune)
模型层注入——知识“硬件升级”
通过直接修改模型底层的知识库或参数结构,让模型从“出厂设置”进化为“领域专家”,实现更高效、更精准的知识调用。
(1)核心目标
修改模型参数或结构,将知识固化到神经网络中,相当于给模型进行“硬件升级”。
(2)实现思路
模型层注入(知识“硬件升级”)就是我们常提到的模型微调(Fine-tuning),本质上是给预训练模型“定制化升级”——通过在特定领域数据上进一步训练,让模型从“通才”变成“专家”。
(3)PEFT(参数高效微调)
模型微调常用的方法是PEFT(参数高效微调),通过仅优化模型的部分参数(如低秩矩阵、适配器)而非全量参数,以极低成本实现模型在特定任务上的高效适配。
方法一:LoRA(Low-Rank Adaptation)
在预训练模型的权重矩阵中引入低秩矩阵(参数减少90%以上),通过优化这些低秩矩阵来实现微调,而无需对整个模型进行大幅度修改。
方法二:QLoRA(Quantized Low-Rank Adaptation)
结合LoRA与量化技术,将预训练模型量化为低精度(如4位),同时保持模型精度的最小损失。
三、推理层注入(RAG)
推理层注入——知识“实时外挂”
通过动态检索外部知识库,实时将最新信息拼接到输入提示中,大语言模型就从“死记硬背答案”进化成“边查资料边写作文”。输出内容既专业精准,又自然流畅,彻底告别“一本正经胡说八道”(已读乱回)。
(1)核心目标
在模型生成答案时,动态检索外部知识库,并将检索结果实时拼接至输入提示中,相当于给模型安装“实时外挂”。
(2)实现思路
推理层注入(知识“实时外挂”)就是我们常提到的RAG(检索增强生成),通过将用户提问向量化→检索知识库→返回相关片段,然后将“问题+检索结果”输入大模型生成答案。
(3)RAG(检索增强生成)
RAG(检索增强生成,Retrieval-Augmented Generation)通过结合信息检索和生成技术,使得大语言模型能够实时从外部知识库中检索相关信息,并将这些信息拼接到输入提示中,从而生成更加准确和有用的回答或文本。
- 检索(Retrieval):从外部知识库中精准抓取与问题高度相关的信息片段,为生成提供实时知识依据。
- 增强(Augmented):将检索到的信息拼接到输入提示中,为生成模型注入外部知识,增强回答的专业性和准确性。
- 生成(Generation):结合检索到的信息和原始问题,通过生成模型输出连贯、自然且准确的回答或文本。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。