今年,无论是一些头部厂商,中小厂商,从海外到国内,大中小公司都在积极拥抱讨论AI和拥抱AI。
AI 相关的人才缺口已达 500 万,其中AI产品经理需求旺盛,薪资中位数再创新高,36k/月。如果是在头部公司,加上年终奖、项目奖金和期权等,一年50W不是梦想!
随着Ai在不同业务场景中价值体现,AI产品经理岗位要求也越发细分,B端方向成为主阵地。不少人十分心动,没有吃上移动互联网的红利,这波AI红利一定不能再错过啦。
所以今年职场人纷纷规划转岗AI产品经理。一番改简历、面试之后发现,根本拿不到offer。哪里出了问题?说白了是经验与岗位要求不匹配。
1、那么0经验、不懂技术,还能做AI产品经理吗?
很明确告诉你:能。你可能会说,AI产品经理不是要精通技术吗?不懂算法、大模型等等黑科技,怎么能做好AI产品经理?
我们拆解近千份AI产品经理JD发现,市场需求的是这3类AI产品经理:
第一类,模型层AI产品经理, 算法理解能力、数据治理能力、技术可行性评估能力。适合高学历,高技术(算法、人工智能等)背景产品经理人才。
第二类,平台层AI产品经理, 需具备系统架构设计能力、资源调度优化能力、开发者生态建设能力。适合有技术背景的产品经理人才。
第三类,应用层AI产品经理, 主要实现AI商业化落地,聚焦用户体验与业务价值转化,需要具备行业场景洞察能力、需求拆解能力、商业化运营能力。现在企业在招的AI产品经理多指这一类。
学历硕士及以上,毕业于计算机科学/人工智能/数学专业,可以优先考虑模型层AI产品经理。
本科学历,毕业于计算机/软件工程专业等,可以选择平台层AI产品经理。
如果你没有技术背景,学历也不算顶尖,但是行业经验丰富的传统产品经理,想抓住AI机会,强烈建议你从应用层AI产品经理。
看到这里,你应该对AI产品经理有了详细了解,但如何顺利入行呢?
2、制定计划 ,提升Ai产品竞争力
每个行业的发展都要经过重技术、重产品、重运营这3个阶段,目前AI行业现已进入以产品优先的第二阶段,由此对AI产品经理的要求更加严格。
具体如下:
商业变现模式和闭环: AI产品经理需深入了解行业,从痛点出发,找到有价值的场景,制定有效的商业策略和定价,以实现产品变现。
把控产品需求: 在清晰公司战略的基础上,深挖产品需求,用人工智能技术重新定义场景和需求,快速验证并落地能解决痛点问题的产品。
与技术互相推动: 需关注AI行业动态,理解技术实现过程和技术边界,将用户需求与AI技术结合,优化产品设计,加速产品目标的实现。
有AI项目落地经验: 具备AI产品、智能+、智慧+产品落地经验,能快速产出行业产品AI化解决方案。
如果以上能力你全都掌握,那么恭喜你!有机会抓住AI时代新机遇,拿到心仪的高薪产品offer!
如果你刚毕业/懂技术/有一点产品经验,却遇到行业洞察力不足、业务分析能力弱、没有AI产品落地经验等困难。
那想成为AI产品经理就没有别的办法了吗?
有。
这里一份AI 产品经理视角的大模型学习指南送给大家!!!
如何成为 AI 时代的高效学习者?——AI 产品经理视角的大模型学习指南
一、AI 时代的竞争本质:效率跃迁中的个人机遇
从产业迭代规律看,AI 驱动的生产效率革命正遵循 “新岗位效率 > 被替代岗位效率” 的底层逻辑,推动社会整体效能提升。但对个体而言,这意味着 “AI 工具掌握速度决定职业竞争力梯度”—— 这一规律与计算机普及期、互联网爆发期、移动互联网红利期完全一致:早半步掌握核心工具的人,将获得指数级的职业发展加速度。
二、一线从业者的十年经验沉淀
作为在头部互联网企业深耕十余年的 AI 产品负责人,我在带领团队落地多个大模型项目的过程中,发现 90% 的从业者面临三大核心困境:
- 知识体系碎片化:海量资料缺乏科学分层,难以构建结构化认知
- 实践场景断层:理论学习与产业需求脱节,缺乏可复用的落地方法论
- 资源获取壁垒:优质学习资源分散在专业社区,非技术背景者难以触达
基于这些洞察,我们系统整理了一套专为 AI 产品经理 / 从业者设计的学习体系,旨在解决 “学什么、怎么学、如何用” 的全链路问题。
三、全维度学习资源矩阵(限时免费开放)
以下资源已通过 CSDN 官方认证,扫码即可领取(无任何附加条件):
(一)认知基建层:建立行业全景思维
- 《大模型技术演进路线图》思维导图(高清可编辑版)
▶ 涵盖预训练模型架构 / 多模态技术 / 提示工程等 12 大核心模块
▶ 标注产业应用热点(智能客服 / 内容生成 / 代码辅助等 8 大场景) - 《AI 产品经理知识图谱》手册
▶ 拆解需求分析 - 模型选型 - 项目落地全流程工具链
▶ 附 30 + 经典案例的产品设计文档模板
(二)能力提升层:构建实战技能体系
- 系统课程包(120 课时全流程录播)
▶ 模块 1:大模型基础(Transformer 原理 / 训练框架解析)
▶ 模块 2:产品设计实战(Prompt 优化策略 / API 调用设计)
▶ 模块 3:行业应用精讲(金融 / 零售 / 医疗领域解决方案) - 开源项目实训库
▶ 含智能问答系统 / 个性化推荐引擎等 5 个完整项目代码
▶ 配套《从 0 到 1 落地指南》(含需求文档 / 技术选型报告)
(三)持续进化层:加入产业交流生态
- 每周技术闭门会(线上直播):一线大厂 PM 分享最新落地案例
- 专属社群资源:每日更新行业报告 / 岗位内推 / 技术答疑
- 认证学习路径:完成课程可获得 CSDN 颁发的《AI 产品经理能力认证》
四、立即行动:抢占 AI 时代的 “认知时差”
扫码领取资源后,建议按以下路径开启学习:
第 1 周:完成思维导图精读 +《深入浅出大模型》书籍重点章节
第 2-4 周:跟随课程完成智能客服系统的全流程实战
第 1 个月起:参与行业案例拆解,尝试用大模型优化现有工作流程
这个时代从不辜负 “工具敏感型” 学习者 —— 当多数人还在观望时,早一步掌握 AI 生产力工具的人,已经在重构职业发展的底层逻辑。点击下方二维码,立即领取你的 AI 时代入场券
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。