几年前,我们还在讨论“AI 到底有什么用”,可到了 2025 年,AI Agent 已经可以自动感知环境、拆解任务、并灵活应对变化;与此同时,Agentic AI 又一次将“协作”提到新高度,让多个小团队般的 Agent 分工协作,共同实现“更高层次的目标”。
这两个概念最近异常火热,但在日常讨论或媒体稿件中,往往被混为一谈。
你可能经常看到——“2025 年是 Agent 爆发之年”、“这两天微软、谷歌都在密谈 Agent 技术”、或是“Gartner 将 Agentic AI 列为 2025 年十大技术趋势之一”。当我们被这些预测震撼时,不免要问:AI Agent 和 Agentic AI 之间又有着怎样的本质差别?
来自康奈尔大学的研究团队及其合作者在一篇题为 AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges 的综述中,从定义、特征、架构、应用场景以及挑战与解决方案等多个维度,拆解了两者的核心内涵和技术边界。
这项工作旨在为开发鲁棒、可扩展和可解释的 AI Agent 和 Agentic AI 驱动的系统提供明确的路线图。
1、定义
首先,AI Agent 和 Agentic AI 在定义等基本方面上存在明显不同。
AI Agent 是一种自主软件实体,专为在限定的数字环境中执行目标导向的任务而设计。这些 Agent 能够感知结构化或非结构化的输入,基于上下文信息进行推理,并采取行动以实现特定目标,通常作为人类用户或子系统的替代品。与遵循确定性工作流程的传统自动化脚本不同,AI Agent 具备响应式智能和有限的适应性,能够解读动态输入并相应地调整输出。
如下图,AI Agent 在架构分类和实际部署中具有三大基础特征:自主性、任务专一性以及反应性与适应性。
图|AI Agent 的核心特征——自主性、任务专一性和响应性。
其中,自主性指的是 Agent 在部署后能够独立行动,减少对人工干预的依赖,从而实现大规模的无人值守运行。这使得 AI Agent 能够在持续监督不切实际的应用场景中实现可扩展的部署,例如客户服务机器人或日程助手。
任务专一性则体现了 AI Agent 能够在特定功能领域(如日程安排、查询或过滤)内实现高性能优化。这使得 AI Agent 在自动化任务中高效、可解释、高精度运行,尤其是在通用推理不必要的场景中。
响应性是指 Agent 能够响应其环境(包括用户指令、软件状态或 API 响应)变化;当进一步结合适应性时,一些系统还通过反馈循环、启发式方法或更新上下文缓冲区等方式,整合了基础的学习机制,以在个性化推荐或对话流程管理等场景中逐步优化行为。
与 AI Agent 不同,Agentic AI 是一种新兴的智能架构,其利用多个专业化 Agent 协作来实现复杂且高层次的目标。 这些系统由模块化的 Agent 组成,每个 Agent 负责更广泛目标的一个独特子组件,并通过集中式协调器或去中心化协议进行协调。这种结构标志着从单一 Agent 架构中通常观察到的原子化、响应式行为的概念转变,转向为一种以动态 Agent 间协作为特征的系统级智能形式。
这一范式的关键推动因素是目标分解,即规划 Agent 自动解析用户指定的目标,并划分为更小、更易于管理的任务。这些子任务随后被分配到 Agent 网络中。多步推理和规划机制促进了这些子任务的动态排序,使系统能够实时适应环境变化或部分任务失败。这确保了即使在不确定性条件下,也能鲁棒地执行任务。
同时,不同 Agent 通过分布式通信渠道通信,例如异步消息队列、共享内存缓冲区或中间输出交换,从而实现无需持续集中监督的协调。
此外,反思性推理和记忆系统使 Agent 能够在多次交互中存储上下文,评估过去的决策,并迭代优化其策略。这些能力共同使得具身 AI 系统能够展现出灵活、适应性强且协作的智能,超越了单个 Agent 的操作限制。
研究团队通过智能家居系统案例阐释了 AI Agent 和 Agentic AI 之间的区别。
图|AI Agent 与 Agentic AI 在概念上的对比。
如上图所示,左侧展示了一个传统的 AI Agent,即智能恒温器。它接收用户设定的温度值,并自主控制加热或冷却系统以维持目标温度。虽然它能够表现出一定的自主性,比如学习用户的作息时间或在无人时减少能耗,但它仅在孤立状态下运行,执行单一且明确的任务,而不涉及更广泛的环境协调或目标推断。
相比之下,右侧则展示了一个嵌入智能家居生态系统中的 Agentic AI 系统——多个专业化 Agent 协同互动,管理诸如天气预测、日常安排、能源定价优化、安全监控以及备用电源激活等多种功能。它们不仅仅是响应式模块,还可以动态通信、共享记忆状态,并协同实现高层次系统目标,如实时优化舒适性、安全性和能源效率等。例如,天气预测 Agent 可能会发出热浪预警,能源管理 Agent 则会协调使用太阳能提前预冷,以避免高峰时段的高电价。同时,Agentic AI 系统还可能在无人时推迟高能耗任务或激活监控系统,实现跨领域的决策整合。
2、应用
另外,AI Agent 和 Agentic AI 在应用场景方面也存在不同。如下:
AI Agent:
- 客户支持自动化和内部企业搜索: 利用检索增强的 LLM 和企业知识库,AI Agent 可以自动回答用户查询、处理工单、检索文档等,从而提高效率并降低成本。
- 电子邮件过滤和优先排序: AI Agent 可以分析邮件内容和元数据,自动分类、提取任务、建议回复等,从而帮助用户管理电子邮件,提高工作效率。
- 个性化内容推荐和基本数据报告: AI Agent 可以分析用户行为和兴趣,生成个性化推荐或数据报告,从而提高用户体验并支持数据驱动的决策。
- 自主调度助手: AI Agent 可以根据用户偏好和日历,自动安排会议、预订行程等,从而提高日程管理效率和灵活性。
Agentic AI:
- 多智能体研究助理: 多个 AI Agent 协同工作,检索、总结、起草科学内容,从而加速科研进程并提高效率。
- 智能机器人协调: 多个机器人协作完成任务,例如仓库自动化、农业无人机检测、机器人采摘等,从而提高效率和生产力。
- 协作医疗决策支持: 多个 AI Agent 协同工作,进行诊断、监测、治疗规划等,从而提高医疗诊断的准确性和治疗的有效性。
- 多 Agent 游戏 AI 和自适应工作流自动化:多个 AI Agent 协同工作,进行游戏探索、流程自动化等,从而提高游戏体验和业务流程的效率。
图 | AI Agents 和 Agentic AI 在八个核心功能领域的分类应用。
3、挑战与局限
此外,AI Agent 和 Agentic AI 面临的挑战也不同。
AI Agent 在利用 LLM 和工具使用接口自动化结构化任务方面,存在可靠性差、泛化能力不足和长期自主性弱等问题。这些挑战既源于其对静态预训练模型的依赖,也在于其难以具备因果推理、规划和鲁棒适应等 Agent 特性,主要分为以下 5 点:
- 缺乏因果理解: AI Agent 难以区分相关性和因果关系,导致在面临新情况时表现不佳。
- LLM 限制: LLM 存在一些固有的限制,例如幻觉、脆弱性、可解释性差、知识截止日期、偏见等,这些限制会影响 AI Agent 的性能和可靠性。
- 不完全的智能体属性: AI Agent 的自主性、主动性、响应性和社交能力不足,这限制了它们的应用范围和功能。
- 有限的长期规划和恢复能力: AI Agent 难以进行多步骤规划和处理任务失败,这限制了它们在复杂环境中的适应能力。
- 可靠性和安全性问题: AI Agent 在分布性变化下可能出现不可预测的行为,这会影响它们的可靠性和安全性。
尽管多 Agent 架构使得自动化的目标更加宏大,但它为 Agentic AI 系统带来了一系列放大和全新的挑战,这些挑战加剧了基于 LLM 的单个 Agent 所固有的局限性,具体如下:
- 因果性挑战加剧: Agent之间的相互作用会放大因果性缺陷,导致协调问题和错误传播。
- 通信和协调瓶颈: Agent 之间难以进行高效、精确的沟通和协调,这会影响系统的性能和效率。
- 涌现行为和可预测性: Agent 之间的复杂交互可能导致不可预测的行为和系统不稳定,这会影响系统的可靠性和安全性。
- 可扩展性和调试复杂性: 随着 Agent 数量和功能的增加,系统变得越来越复杂,难以调试和维护。
- 可解释性和可验证性: 难以解释 Agent 的行为和验证其决策的正确性,这会影响用户对系统的信任度。
- 安全性和对抗性风险: 易受攻击,例如对抗性样本攻击和模型中毒,这会影响系统的可靠性和安全性。
- 伦理和治理挑战: 难以确定责任、公平性和价值一致性,这会影响系统的社会接受度和伦理合法性。
4、解决方案与未来展望
基于以上 AI Agent 和 Agentic AI 暴露出的问题,研究团队提出了多项改进策略:
检索增强生成(RAG): 通过将用户查询与向量数据库(如 FAISS、Pinecone)语义匹配,AI Agent 可实时引用外部信息,减少幻觉生成。对于 Agentic AI 系统,统一的检索生成流水线可为各子 Agent 提供共享记忆,提升一致性与抗误导能力。
工具化增强推理(Function Calling): Agent 可调用 API、执行脚本或查询数据库,实现动态感知与任务执行,如天气查询、日程安排、运行代码等。多 Agent 协作中,借助函数接口实现职责分工与有序衔接。
Agentic 循环(ReAct Loop): 将“推理→执行→观察”构成闭环,Agent 在每次调用工具或 API 后,先对结果进行验证,再进行下一步推理,从而在单次任务中反复校正、持续纠错。多 Agent 场景下,需要基于共享日志和统一的反馈机制,将各自的观察结果汇聚、对齐,确保系统整体的反思能力不分裂。
多层次记忆架构: 包括情景记忆(记录交互过程和反馈)、语义记忆(保存结构化领域知识)与向量记忆(支持相似度检索);在多 Agent 系统中,各 Agent 可维护本地记忆并访问共享全局记忆,实现跨任务的连续性、个性化和长期规划。
多角色协同: 为应对复杂任务,系统引入策划者、摘要者、审校者等专精角色,由元 Agent 协调,提升可扩展性与容错能力。
反思与自我批评机制: Agent 完成初步输出后,利用二次推理流程对自身结果进行审视和验证。在 Agentic AI 中,可让“审核者”Agent 专门对其他 Agent 的成果进行交叉检查,实现协作式质量把关,促进系统在迭代中不断自我优化。
程序化提示工程: 避免手工调参带来的不可复现和脆弱性,通过代码化的任务模板、上下文填充器及检索变量,动态生成结构化提示。各角色 Agent 统一使用此流水线,确保消息格式、依赖追踪和语义对齐的一致性,杜绝多 Agent 协作中的“提示漂移”现象。
因果建模与模拟规划: 将因果推断嵌入 Agent 推理,使其能够区分关联与因果、进行干预模拟。例如在供应链场景中,Agent 可预测延迟对下游节点的因果影响。在多 Agent 协调时,通过 STRIPS 或 PDDL 等规划语言,明确定义行动的前置条件和效果,实现更安全、更可靠的协作。
监控、审计与可解释性: 记录提示、工具调用、记忆更新和输出日志,为事后分析与故障排查提供依据。多 Agent 环境下,串联各 Agent 的审计痕迹和对话重放,帮助开发者迅速定位错误源头,并通过可视化管道提高系统透明度。
治理感知架构: 通过访问控制、沙箱机制与身份管理,实现决策可控与行为可追溯。多 Agent 系统中,凭借责任归属和合规检查,构建可信的 AI 生态,降低在医疗、金融等敏感领域的应用风险。
最后,研究团队还提出了 AI Agent 和 Agentic AI 的未来发展路线图。
图|AI Agent 和 Agentic AI 的未来路线图
AI Agents 将在五个关键领域实现突破:主动推理、工具集成、因果推理、持续学习与可信操作。
首个重要转变是从被动响应向主动智能迈进。 Agent 将基于模式、上下文或潜在目标主动发起任务,并能动态接入数据库、API 等系统以完成复杂任务。因果推理的发展也至关重要,使 Agent 能理解因果关系,从而更好地支持诊断、规划和预测。为保持适应性,Agent 需具备持续学习能力,借助反馈和情境记忆不断调整行为。这些能力将推动 Agent 从静态工具演变为具备自主性和可控性的认知系统。
Agentic AI 是在此基础上的自然延伸,强调多 Agent 协作、上下文持久化和任务编排。 未来系统将支持多 Agent 并行协作,类似人类团队,通过协调层分配角色、管理依赖关系并解决冲突。持久记忆架构将保障长任务协调和状态感知。模拟规划也将成为核心能力,帮助 Agent 在执行前测试策略、预测结果并优化行为。同时,伦理治理框架将确保 Agent 网络的责任归属与价值对齐。各行业也将涌现出领域专用系统,利用上下文知识实现比通用 Agent 更强的能力。
研究团队还提到了清华大学黄高教授团队提出的新型学习范式 AZR(arXiv:2505.03335),该研究使 AI 不再依赖外部数据,而通过自主生成、验证与解决任务实现自我进化,借助如代码执行等可验证机制推动学习。这为在数据稀缺环境中实现真正自主、可适应的推理 Agent 提供了可能。
结合 AZR,多个专用 Agent 可在协调工作流中共同进化。 例如,科学研究可由提出假设、模拟实验、验证结果、调整策略的 Agent 自动完成,完全通过自我博弈与可验证推理,无需持续人工介入。研究团队认为,AZR 为 AI Agent 和 Agentic AI 向下一代 AI 的转变奠定了基础。
5、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。