如果你对“大模型Agent平台”还有些模糊,这篇文章,建议你一定要看到最后。在AI圈子里,“Agent”(智能体)正在成为下一个风口。不论是开源社区爆火的AutoGPT,还是各大厂争相推出的“AI助手”、“智能客服”,背后核心其实是一件事:构建一个“能听懂、能思考、能执行”的AI智能体平台。但问题是,这个平台怎么搭?大模型怎么选?语音识别、知识库、角色个性要怎么整合?这张《AI大模型Agent平台架构图》给出了一个系统答案:
我将用七大章节,带你层层拆解这张图,让你真正理解大模型Agent平台的“骨架”与“灵魂”。
第一层:采集层——智能体的“感官系统”
Agent再强,也得先“听得见”、“看得见”用户的输入。
采集层就像是人类的五官,是Agent平台与现实世界之间的“感知入口”。
1、具体包括:
输入方式 | 说明 |
---|---|
音频流 | 用户通过麦克风说话,系统实时接收 |
文本 | 聊天框输入,网页输入框等,最传统的方式 |
视频流 | 用于需要图像识别的Agent,如陪伴型机器人 |
多模态输入 | 同时包含语音、图像、手势、文本等混合信息 |
2、为什么重要?
输入通道决定了Agent可覆盖的场景范围。越丰富的输入,越能满足复杂业务需求,比如:
- 智能客服(听懂用户说话)
- 视频陪伴玩具(识别表情/动作)
- 智能导览机器人(结合语音+图像识别)
第二层:大模型层——Agent的大脑芯片
有了感官,接下来就是“思考”。
大模型层就是Agent的“大脑核心”,也是真正让它“理解语言”、“推理判断”、“生成回答”的关键。
1、主流接入模型包括:
模型 | 产地 | 特点 |
---|---|---|
DeepSeek、QWen2.5 | 国内 | 中文能力强,适配性好 |
Gemini、Claude | 国外 | 多模态、多语言支持优 |
星火、豆包、元宝 | 国内大厂 | 商业稳定性强 |
Grok 3、SiliconFlow | 新兴选手 | 创新性高 |
2、设计亮点:
平台允许动态选择/组合多个模型,做到按需调用,兼顾:
- 高准确性(复杂问题调用强大模型)
- 低成本运行(简单问答调用轻量模型)
3、实战举例:
比如在一个“AI医疗助手”中:
- 问“头疼怎么缓解”用国产模型快速回答;
- 问“这个X光片异常吗?”调用多模态模型处理图像再输出文字。
第三层:模型管理层——让模型适配业务场景
通用大模型并不能直接拿来就用!你需要让它“懂行”。
就像一个新员工必须培训一样,模型也要“训练”,才能更懂你的业务。
1、关键模块:
模块 | 作用 |
---|---|
基础模型 | GPT、Qwen等基础语言模型 |
模型微调 | 用特定领域数据进行训练(如医疗、金融、客服) |
模型优化 | 包括量化压缩、加速推理、负载均衡、版本控制等 |
2、常见技术:
- LoRA、QLoRA 等低成本微调方法
- ONNX、TensorRT 做部署优化
- 多版本灰度发布保障稳定
3、重要性在于:
- 快速适配行业需求(懂业务的模型才有用)
- 降低使用成本(压缩模型,响应更快)
- 便于运维管理(版本可控、可回滚)
第四层:功能层——让Agent“听说表演”
你和Agent的每一次交互,几乎都离不开这个“功能层”。
这个层,就是Agent的“表达力”和“交互感”。
1、核心功能:
功能模块 | 说明 |
---|---|
语音识别(ASR) | 识别人类语音 → 文字 |
语音合成(TTS) | 输出文字 → 变成语音 |
语音活动检测(VAD) | 判断你是不是在说话(自动收听、停顿) |
情绪识别 | 识别语气,如生气、困惑、悲伤等 |
音色个性化 | 定制不同的声音风格(如男声、女声、童声) |
2、一个真实案例:
在一个“老年陪护Agent”中:
听懂奶奶说:“我有点头晕……”(语音识别)
分析语气略显担忧(情绪识别)
轻柔女声回应:“奶奶,可能是血压有点低,您要不要坐下来休息一会?”(语音合成+个性设定)
功能层让Agent不只是“能说”,而是“说得动人”。
第五层:Agent层——让智能体有性格、有逻辑
这是整个平台最有趣、最重要的一层。
这里,Agent真正具备了“身份”、“任务”、“情感”,成为“一个有性格、有目标的AI”。
1、四大关键维度:
模块 | 功能 |
---|---|
知识库设定 | 给Agent一套“私有记忆”,比如产品FAQ、企业内部制度 |
角色设置 | 医生、秘书、销售、情感陪伴者……角色决定说话风格和任务流程 |
Agent协作 | 多个Agent之间分工合作,比如一个负责收集信息,一个负责分析 |
个性化设定 | 包括语气偏好、回答风格、记忆能力等 |
2、一句话概括:
你不再是“问答机器人”,而是“情感助理、知识专家、任务执行者”的多面体。
3、比如:
销售型Agent,热情健谈、目标明确;
教育型Agent,耐心引导、善于总结;
医疗型Agent,严谨、谨慎、常规参考文献。
第六层:接口层——连接世界的关键纽带
再强的Agent,也要“走出去”!
接口层负责打通系统上下游,让Agent可以接入各种App、小程序、网页、IoT设备中。
1、典型接口:
类型 | 说明 |
---|---|
用户接口 | 网页聊天框、移动App、H5嵌入等 |
API接口 | 提供标准RESTful接口供外部调用 |
WebSocket/Dubbo/TCP | 满足高并发、低延迟、系统级接入 |
2、集成典型应用:
- 融入已有的呼叫中心
- 嵌入企业OA系统
- 连接智能音箱、可穿戴设备
接口层是Agent真正落地场景的“通行证”。
第七层:应用层——Agent真正上岗的地方
一切技术,最终都要服务于场景,产生业务价值。
1、热门落地场景包括:
Agent类型 | 应用场景 |
---|---|
客服Agent | 7×24小时自动答疑、催收、投诉处理 |
办公Agent | 日程管理、数据汇总、邮件生成 |
陪伴Agent | 儿童智能玩具、老人陪护机器人 |
教育Agent | 作业讲解、课程辅助、口语陪练 |
安防/值守Agent | 智能监控识别、夜间值守告警 |
你可以根据业务需求选择模型 + 设定角色 + 配知识库 + 接入接口,快速生成可落地的智能体服务。
最后总结:不是一张图,是一套AI时代的系统思维
这张图并不只是一个平台构架图,它代表的是:
- 一种搭建AI产品的方法论
- 一种理解智能系统的逻辑视角
- 一种未来业务自动化的路径地图
强烈建议你收藏这张图,反复推演每一层的作用与价值。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。