彻底弄懂!AGI、Agent、MCP 的概念及关系全解析(火爆收藏)

在当今科技飞速发展的时代,人工智能无疑是最耀眼的领域之一。大语言模型(LLM)、AIGC、多模态、RAG、Agent、MCP 等各种相关概念如雨后春笋般层出不穷。对于非 AI 行业的开发者而言,若不深入了解,这些概念极易混淆。本文旨在简要介绍 AGI、Agent、MCP 这些 AI 技术的核心概念、基本原理及其相互关系,帮助大家建立基础认知。

一、通用人工智能 AGI

通用人工智能(Artificial General Intelligence, AGI)可谓是人工智能领域的终极愿景。其致力于打造能够像人类一样,在各种不同领域理解、学习并应用知识的智能系统。

1、定义

目前,AGI 尚无一个统一、精确的定义。从本质理解,AGI 具有以下特性:

  1. 智能全面性:能够执行人类所有智力任务,具备与人类相当甚至超越人类的智能水平。
  2. 与狭义 AI 的区别:不同于专注语音识别、图像分类等单一任务的狭义人工智能,AGI 追求通用、全面的智能,可在不同知识领域自由切换,进行学习、推理与创造。
2、特点
  1. 自主解决新问题:面对全新且未专门编程的问题,AGI 能凭借自身智能分析问题本质,寻找有效解决策略。例如遇到从未见过的机械故障,AGI 可通过理解机械原理、迁移过往类似问题解决经验及运用推理能力,提出修复方案,而非依赖预设的故障解决流程。
  2. 跨领域学习迁移:AGI 可在不同领域快速学习新知识,并将一个领域学到的知识、技能与经验迁移到其他领域。

虽然目前距离真正实现通用人工智能还有很长的路要走,但这一概念为整个人工智能领域指明了前进的方向,激励着无数科研人员为之努力探索。

3、 RAG 技术

RAG(Retrieval-Augmented Generation,检索增强生成) 技术,是一种将信息检索(IR) 与大型语言模型(LLM) 的文本生成能力相结合的人工智能框架。其核心思想是:当 LLM 需要回答一个问题或生成文本时,不是仅依赖其内部训练时学到的知识,而是先从一个外部知识库中检索出相关的信息片段,然后将这些检索到的信息与原始问题/指令一起提供给LLM,让LLM基于这些最新、最相关的上下文信息来生成更准确、更可靠、更少幻觉的答案。

大型语言模型虽然拥有海量的知识和强大的语言理解与生成能力,但也存在一些关键限制:

  1. 知识局限性/过时性: LLM 的知识主要来源于其训练数据截止日期之前的信息。对于训练数据之后发生的事件、新研究、最新数据或特定领域的细节,LLM 可能不知道或给出过时的信息。
  2. 幻觉: 当 LLM 遇到其知识库中不明确或不存在的信息时,它可能会“捏造”出看似合理但事实上错误或不存在的答案。
  3. 缺乏来源/可验证性: LLM 通常无法提供其生成答案的具体来源依据,使得验证答案的准确性变得困难。
  4. 特定领域知识不足: 通用 LLM 可能缺乏对某个特定公司、组织或个人私有知识库的深入了解。

RAG 正是为了解决这些问题而诞生的。

图片

二、智能体 Agent

“智能体”(Agent)在计算机科学和人工智能领域指的是一个能够感知环境、自主决策并采取行动以实现特定目标的实体或系统。它可以是软件程序、机器人硬件,甚至是生物实体(如人类或动物),但在 AI 领域通常指软件智能体。

Agent 和 AGI 最大的区别:

对比维度AGIAgent
核心定义旨在达到人类同等智能水平,具备通用智能,能理解、学习并处理几乎所有类型任务的人工智能可以通过自主决策能力完成通用任务的智能系统,是集 Function Call 模型、软件工程于一体的复杂系统
任务类型追求全面的智能,涵盖认知、学习、推理、创造等多方面任务侧重执行具体任务,通过自主决策和与外界交互来达成目标
系统构成整体的通用智能框架,追求高度综合和全面的智能实现注重处理模型与外界的信息交互,可集成其他能力模块(如 AIGC)完成特定任务
相互关系AGI 是人工智能发展的终极目标,Agent 是实现这一目标过程中的阶段性成果和技术路径之一,Agent 技术的发展有助于推动 AGI 的实现

Agent 最大的特点是,借助 Function Call 模型,可以自主决策使用外接的一些工具来完成特定的任务。

2、 Function Call 模型
2.1.1 什么是 Fucntion Call 模型

Function Calling(函数调用) 是大型语言模型的关键技术。前面有提到过 RAG技术 是为了解决模型无法和外接数据交互的问题,但是 RAG 的局限在于只赋予了模型检索数据的能力,而 Function Calling 允许模型理解用户请求中的潜在意图,并自动生成结构化参数来调用外部任何函数/工具,从而突破纯文本生成的限制,实现与真实世界的交互,比如可以调用查天气、发邮件、数学计算等工具。

Function Call 模型最早由 OpenAI 在 2023 年 6 月 13 正式提出并发布,首次在 GPT-4 模型上实现了 Function Calling 能力。OpenAI 作为大语言模型的领路人,其发布的模型的 API 协议都会行业标准,后面国内外新发布模型都会按照 OpenAI 的协议作为标准实现。截止目前,支持 Fucntion Calling 能力的主流模型如下表:

模型开发者首次支持 Function Calling 时间
GPT-4OpenAI2023/06/13
Claude-3Anthropic2024/03/04
Gemini-2.0Google2024/12
DeepSeek-R1深度求索公司2024/02/12

除了上面的知名度高的模型,还有一些其他开源或闭源模型也支持了 Fucntion Calling 能力,但是截止目前为止,GPT-4 仍然是公认的 Fucntion Calling 能力最强的模型。

2.1.2 工作原理:三步闭环流程

Function Call 模型的工作流程如下图:

图片

步骤详解:

1、定义函数(开发者预设)

向 LLM 描述函数的用途、输入参数格式(JSON Schema),例如:

{  
"name": "get_current_weather",  
"description": "获取指定城市的天气",  
"parameters": {  
  "type": "object",    
  "properties": {   
     "city": {"type": "string", "description": "城市名称"},     
      "unit": {"enum": ["celsius", "fahrenheit"]}   
 },   
  "required": ["city"]  
  }
}

name 是工具名称

description 是这个工具的用途

parameters 是这个工具需要的输入参数

2、模型决策与生成参数

用户提问:“北京今天需要带伞吗?”

→ LLM 识别意图需调用 get_current_weather

→ 生成结构化参数:

{“city”: “北京”, “unit”: “celsius”}

3、执行函数 & 返回结果

  • 程序调用天气API,获真实数据:{“temp”: 25, “rain_prob”: 30%}
  • 将结果交回LLM,生成最终回复:“北京今天25°C,降水概率30%,建议带伞。”
2.1.3 核心优势:LLM 的“手和眼睛”
能力传统LLM支持Function Calling的LLM
获取实时信息❌ 依赖训练数据✅ 调用搜索引擎/数据库
执行精准计算❌ 常出错(如复杂数学)✅ 调用计算器/Python
操作外部系统❌ 无法执行✅ 发送邮件/控制智能家居
返回结构化数据❌ 文本难解析✅ 输出标准JSON
2.2 Agent

OpenAI 发布 Function Call 模型后,Agent 才开始发展。而 Agent 真正进入到公众视野,被大家广泛关注的事件是 2025年4月 Manus 发布了通用智能体产品,引入了 Computer Use 和 Browser Use,首次展现出智能体的强大能力。

2.2.1 Agent 的工作流程

实际上上文提到的 Function Call 模型的工作流程图,已经算是一个 Agent 的雏形了,不同点是,Agent 完成一次任务,实际上会循环调用模型,可能会调用多次 Function Calling,每次需要调用什么工具,完全由模型决策。一个最简单的 Agent 调用流程图如下:

图片

比如有一个出行规划的智能体,这个智能体配置有天气查询、驾车规划、公共交通规划、骑行规划、步行规划等工具。用户询问“我在深圳,5月1日想去自驾去北京旅行,帮我规划一下出行方案。”,一个可能的具体的执行流程如下:

图片

2.2.2 怎么开发一个自己的 Agent

最简单的方法就是把 Agent 的提示词(prompt)、工具、llm 调用,工具执行都硬编码到代码中,这样确实可以快速开发一个特定功能的 Agent。这样的实现会带来一些问题:

  1. 提示词(prompt),工具需要调整的时候,需要改配置或者代码,灵活度不够高;
  2. 如果要开发一个新功能的 Agent,整体代码可能需要重新实现一遍。

为了解决这一系列的问题,coze 、dify 、 腾讯云智能体开发平台等智能体开发平台相继出现。借助这些平台,开发者甚至不需要会编程,不需要服务器资源,就可以开发一个自己的Agent,Agent 的整个执行流程完全由平台在云上执行。智能体开发平台的架构一般包含 插件配置、Agent 配置、Agent 执行模块、插件执行模块,发布模块。

图片

插件配置:所有 Agent 的工具都统一管理起来,而不是散落在各个 Agent 内部,这样可以做到工具的复用。一般平台会自带一些插件,比如网络搜索、文件上传、AIGC 工具等,同时也支持开发者添加自己的自定义插件。

Agent 配置:配置 Agent 的 提示词 (prompt),使用的模型,以及选择插件配置中的一批工具提供给模型做选择。

发布配置:开发者把自己的 Agent 开发调试稳定以后,发布成稳定版本就可以提供给用户使用了。

插件执行:执行某个特定的插件,返回结果。

Agent 执行:实现通用的 Agent 执行流程,调用插件执行模块实现工具调用。

2.2.3 Multi-Agent

除了使用智能体开发平台快速开发自己的 Agent 以外,还可以使用 sdk 的方式进行开发。2025 年 3 月 11 日,OpenAI 重磅发布 OpenAI Agent SDK!AI 开发范式彻底颠覆!使用 sdk 可以快速配置一个自定义的 Agent 后执行,相比智能体开发平台,sdk 具有更高的灵活性和自主可控性。

同时,在 OpenAI Agent SDK 中,首次引入了 Mulit Agent 的概念。在此之前,通过智能体开发平台,我们开发出来的 Agent 都只是单 Agent。一个单 Agent 的能力有限,只能解决特定领域的一个任务,而一个复杂任务往往需要执行多个领域的任务才能完成。而 OpenAI Agent SDK 可以让开发者定义多个领域的 Agent,并且给这些 Agent 配置一些转交关系,允许某个 Agent 把特定的任务交给另外一个合适领域的 Agent 来执行,多个 Agent 之间协同和互动来完成一个复杂任务。

在 OpenAI Agent SDK 发布以后,以腾讯云智能体开发平台为代表的相关产品都相继支持了 Multi-Agent 模式。

2.3 Agent 的发展

Agent 目前的发展还处于一个较初期的阶段,但是发展速度很快。在一些垂直领域比如代码生成 Cursor/腾讯云 AI 代码助手 CodeBuddy、广告营销等方向已经有了比较好的落地。而更通用的 Agent 目前除了看到 Manus 落地以外,还没看到其他比较好的应用模式落地。相信随着时间发展,会有越来越好用,越来越通用的 Agent 应用诞生。

三、MCP

3.1 什么是 MCP

MCP(Model Context Protocol,模型上下文协议)是由人工智能公司 Anthropic2024 年 11 月 24 日正式发布并开源的协议标准。Anthropic 公司是由前 OpenAI 核心人员成立的人工智能公司,其发布的 Claude 系列模型是为数较少的可以和 GPT 系列抗衡的模型。

3.2 为什么需要 MCP

MCP 协议旨在解决大型语言模型(LLM)与外部数据源、工具间的集成难题,被比喻为“AI应用的USB-C接口“。通过标准化通信协议,将传统的“M×N集成问题”(即多个模型与多个数据源的点对点连接)转化为“M+N模式”,大幅降低开发成本。

图片

在 MCP 协议没有推出之前:

  1. 智能体开发平台需要单独的插件配置和插件执行模型,以屏蔽不通工具之间的协议差异,提供统一的接口给 Agent 使用;
  2. 开发者如果要增加自定义的工具,需要按照平台规定的 http 协议实现工具。并且不同的平台之间的协议可能不同;
  3. “M×N 问题”:每新增一个工具或模型,需重新开发全套接口,导致开发成本激增、系统脆弱;
  4. 功能割裂:AI 模型无法跨工具协作(如同时操作 Excel 和数据库),用户需手动切换平台。

没有标准,整个行业生态很难有大的发展,所以 MCP 作为一种标准的出现,是 AI 发展的必然需求。

总结:MCP 如何重塑 AI 范式:

维度传统模式MCP 模式变革价值
集成成本每对接新工具需定制开发一次开发,全网复用开发效率提升 10 倍
功能范围单一工具调用多工具协同执行复杂任务链AI 从“助手”升级为“执行者”
生态开放性封闭式 API,厂商锁定开源协议,社区共建工具库催生“AI 应用商店”模式
安全可控性API 密钥暴露风险数据不离域,权限分级管控满足企业级合规需求
3.3 MCP 的发展情况

MCP 自 2024 年 11 月 24 日 发布以来,OpenAI、Google、微软、腾讯、阿里、百度等头部企业纷纷接入 MCP,推动其成为事实性行业标准。并且相继出现了 mcp.so 、mcpmarket 等超大体量的 MCP 服务提供商。国内的头部企业也相继加入 MCP 服务商的竞争中。在如此庞大的 MCP 市场下,开发者基本不需要开发自己的插件,直接使用 MCP 服务商的插件就可以直接开发大量 Agent。

同时很多头部企业,开始把自身原有的 API 业务开发成封装成 MCP 服务对外提供。比如:

  1. GitHub Copilot 提供 MCP 的方式生成代码;
  2. AWS 2025 年 6月推出开源工具 Amazon Serverless MCP Server,支持 Agent 直接操作云上资源,进行服务编排。
  3. 腾讯地图、高德地图、百度地图均发布 MCP Server,支持在 Agent 中使用丰富的地图资源。
  4. 腾讯云COS、百度网盘均已支持 MCP 协议的接入。

未来趋势:

  • 与 AIOS 融合: MCP 正成为 AI 操作系统(如华为鸿蒙 HMAF)的核心组件,实现跨设备智能调度;
  • 生态挑战: 大厂通过 MCP 构建“闭环生态”(如阿里集成高德地图),可能引发协议割裂,需推动跨平台协作标准。

MCP 不仅是技术协议,更是 AI 生产力革命的基石——它让模型真正融入现实世界,成为人类工作的无缝延伸。

四、总结


三者之间的关系

概念定义与作用与其他概念的关系
AGI通用人工智能,是人工智能发展的终极目标,追求全面智能为 Agent 和 MCP 等技术的发展提供宏观目标指引;Agent 和 MCP 等技术的发展是迈向 AGI 的过程
Agent在 AIGC、MCP、大语言模型 LLM 等原子能力基础上编排,实现复杂任务执行的具体形式利用 MCP 提供的标准化接口与外部交互,拓展行动能力;通过 RAG 访问知识库获取信息辅助决策;其运作朝着 AGI 所追求的通用智能方向发展
MCP为 Agent 与外部数据源和工具交互提供关键的标准化支持的技术为 Agent 调用外部工具(如市场调研数据库、文档编辑工具等)提供接口,是 Agent 实现复杂任务的重要支撑

五、如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值