随着人工智能技术的飞速发展,大模型(Large Models)已成为推动行业革新的关键力量。这些模型在自然语言处理、计算机视觉、推荐系统等领域展现出卓越的性能,为求职者开辟了新的职业道路。本文将深入探讨AI大模型时代下的热门就业方向。
全套大模型学习资料,文末领取~
一、自然语言处理(NLP)
自然语言处理是大模型应用最为广泛的领域之一。随着BERT、GPT等预训练模型的普及,NLP工程师的需求量激增。
1、热门职位:
- NLP工程师:负责构建能够理解和生成人类语言的系统。
- 语言模型研究员:专注于开发新的预训练模型,提高语言理解的准确性。
2、应用实例:
- 机器翻译:如谷歌翻译,利用大模型实现多语言之间的实时翻译。
- 情感分析:帮助企业分析消费者对产品的情感态度,以优化营销策略。
二、计算机视觉
计算机视觉利用大模型解析图像和视频数据,为各行各业带来创新应用。
1、热门职位:
- 计算机视觉工程师:开发能够识别和处理图像和视频的算法。
- 自动驾驶视觉系统工程师:为自动驾驶汽车设计视觉感知系统。
2、应用实例:
- 人脸识别:广泛应用于安防、支付等领域。
- 医疗影像诊断:利用AI大模型辅助医生分析医疗影像,提高诊断准确率。
三、推荐系统
推荐系统通过分析用户行为,为用户提供个性化的内容和服务。
1、热门职位:
- 推荐算法工程师:负责优化推荐算法,提升用户体验。
- 用户行为分析师:分析用户数据,为推荐系统提供数据支持。
2、应用实例:
- 电商推荐:如淘宝、亚马逊,根据用户历史行为推荐商品。
- 音乐和视频推荐:如Spotify、Netflix,为用户推荐可能喜欢的歌曲和电影。
四、金融科技
金融科技行业利用大模型处理和分析大量金融数据,以提高决策效率和风险管理。
1、热门职位:
- 量化分析师:运用机器学习模型进行量化交易策略的开发。
- 风险管理工程师:利用AI模型评估和预测金融风险。
2、应用实例:
- 信用评分:通过分析用户数据,更准确地评估信用风险。
- 市场预测:利用大模型预测股票、外汇等市场的走势。
五、医疗健康
大模型在医疗健康领域的应用正在逐步深入,为疾病的预防、诊断和治疗带来革命性变化。
1、热门职位:
- 医疗数据分析师:分析医疗数据,为临床决策提供支持。
- 生物信息学工程师:结合生物信息学知识,利用AI模型进行药物研发。
2、应用实例:
- 疾病预测:通过分析患者数据,预测疾病发生的可能性。
- 药物发现:利用AI模型加速新药的发现和开发过程。
AI大模型的发展为各行各业带来了前所未有的机遇。对于求职者而言,掌握相关技能,深入了解行业需求,将有助于在AI大模型时代找到属于自己的位置。无论是技术岗位还是业务分析,大模型都为职业发展提供了广阔的舞台。
六、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。