【pandas的基础操作】【创建】【增删改查】【空值处理】

一、创建df的4种方式


import pandas as pd

# 1、[[], []]
# df = pd.DataFrame([[1, 3], [2, 5]], columns=["a", "b"])
df = pd.DataFrame([], columns=["a", "b"])
print(df)
df["a"] = df["a"].apply(str) + "%"
print(df)


# 2、[{}, {}]
df2 = pd.DataFrame([{
   
   "a": 122, "c": 3434}, {
   
   "c": 454551, "a": 8859}])
print(df2)


# 3、{"a": [], "b": []}
df3 = pd.DataFrame({
   
   "x": [1, 2, 3], "s": [4, 5, 6]})
print(df3)


# 4、{"a": pd.Series([]), "b": pd.Series([])}
df4 = pd.DataFrame({
   
   "a": pd.Series([9, 8, 7]), "dd": pd.Series([6, 5, 4])})
print(df4)

二、df行列的增删改查


1、增


import pandas as pd


# 1、增

df = pd.DataFrame([{
   
   "a": None, "c": 3434}, {
   
   "c": None, "a": 8859}])
print(df)

# 增加行
df.loc[len(df)] = {
   
   "a": 123, "c": 456}  # 追加到最后
df.loc[0] = {
   
   "a": 123, "c": 456}  # 在开头插入一行
print(df)

# 增加行
new_row_data = {
   
   "a": 123, "c": 456}  # 追加到最后   # 字典中的键应与DataFrame现有的列名一致
df = df.append(new_row_data, ignore_index=True)  # 忽略索引并将其重新编号
print(df)

# 增加列--最常用--,默认值为NaN
df = pd.DataFrame([{
   
   "a": None, "c": 3434}, {
   
   "c": None, "a": 8859}])
print(df)

df["d"] = 123  # 列名d不存在,所以会自动创建,默认值为NaN;这里填充为123
print(df)


# 增加列,用一个列表填充新的列
df = pd.DataFrame([{
   
   "a": None, "c": 3434}, {
   
   "c": None, "a": 8859}])
print(df
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昂立的狼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值