XTuner 微调 LLM:1.8B、多模态、Agent

微调的两种范式

增量预训练微调

使用场景:让基座模型学习一些新的知识,如垂直类型领域的知识

指令跟随微调

使用场景:让模型学会对话模板根据人类的指令进行对话

训练数据:高质量的对话,问答数据

 一条数据的一生:

 

 

微调算法的种类

FULL FineTuning  LoRA QLoRA

 

### 大语言模型与多Agent系统的最新研究进展 #### 1. LLMs 的核心能力和多模态扩展 大语言模型(Large Language Models, LLMs)的核心在于其强大的规划和推理能力,这种能力使得它们能够自动化完成多种任务。通过融合不同数据类型的优势[^1],LLMs 提升了人工智能理解和处理复杂信息的能力,从而推动了多模态技术的发展。 #### 2. 基于 LLM 的多智能体系统架构 基于 LLM 的多智能体系统近年来在多个领域取得了显著进步。这些系统通常由一组独立运行的智能体组成,每个智能体可以执行特定功能并与其他智能体协作解决问题。具体而言: - **领域和环境**:多智能体系统适用于复杂的模拟场景和社会经济建模等领域[^3]。 - **配置方式**:智能体可以通过集中式或分布式的方式进行配置,其中分布式配置更强调个体自主性。 - **通信机制**:智能体之间的通信可能采用自然语言或其他形式的信息交换协议,以促进协同工作。 #### 3. 技术挑战与发展前景 尽管取得了一定成就,但该领域仍然面临诸多挑战。例如,在实际应用过程中可能出现的知识盲区、幻觉效应等问题会影响系统的可靠性和有效性[^4]。此外,安全性与伦理问题也需要引起高度重视,防止生成不当内容。 #### 4. 实践中的关键技术 针对上述提到的一些局限性,研究人员正在探索改进措施。其中包括但不限于对企业内部数据的有效利用以及微调(fine-tuning)技术的应用等方面的工作[^5]。通过对特定行业或应用场景下的专用语料库进行训练调整,可以使通用的大规模预训练模型更好地适应特殊需求情境下精确度更高的查询响应服务提供支持。 ```python # 示例代码展示如何加载一个预训练好的BERT模型用于文本分类任务 from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) print(output.logits) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值