deepFM论文学习

本文深入解析DeepFM模型,一种结合深度学习与Factorization Machine的推荐系统算法。它通过共享feature embedding,在DL基础上增加FM特征,实现高效二阶特征交互。无需预训练,直接在模型中学习隐向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:deepFM结构比较清晰,更多信息可以参考最后github的代码。

核心思想:在dl基础上增加了FM特征(结构非常类似wdl)。FM(linear+二介组合特征)

 

细节:

1、每个特征都是一个field 映射成embedding向量

2、FM模型与deep part共享feature embedding

3、不需要预训练FM得到隐向量

4、论文给出的FM简化公式方便计算:

在代码中的映射:

# second order term
            # sum-square-part
            self.summed_features_emb = tf.reduce_sum(self.embeddings,1) # None * k
            self.summed_features_emb_square = tf.square(self.summed_features_emb) # None * K

            # squre-sum-part
            self.squared_features_emb = tf.square(self.embeddings)
            self.squared_sum_features_emb = tf.reduce_sum(self.squared_features_emb, 1)  # None * K

            #second order
            self.y_second_order = 0.5 * tf.subtract(self.summed_features_emb_square,self.squared_sum_features_emb)
            self.y_second_order = tf.nn.dropout(self.y_second_order,self.dropout_keep_fm[1])

5、评估结果

参考文献

https://www.jianshu.com/p/6f1c2643d31b

https://github.com/princewen/tensorflow_practice/tree/master/recommendation/Basic-DeepFM-model

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值