python opencv图像叠加/图像融合/mask掩模

本文深入探讨了图像处理领域的三大核心技巧:图像叠加、图像融合及图像mask掩模操作。通过OpenCV函数和numpy操作,详细解析了如何实现图像的叠加与融合,以及利用mask掩模进行图像的精确控制,包括按位AND、OR、NOT和XOR运算,展示了从理论到实践的完整过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、图像叠加

2、图像融合

3、图像mask掩模(包括按位AND,OR,NOT和XOR运算)


1、图像叠加

可以通过OpenCV函数cv.add()或简单地通过numpy操作添加两个图像,res = img1 + img2.两个图像应该具有相同的深度和类型,或者第二个图像可以是标量值.

import cv2
import numpy as np

img1 = cv2.imread('4.jpg')
img2 = cv2.imread('1.jpg')

imgadd = cv2.add(cv2.resize(img1,(200,200)),cv2.resize(img2,(200,200)))
cv2.imshow('imgadd',imgadd)
cv2.waitKey(0)

叠加结果:如果叠加两个图像,它将改变颜色

2、图像融合

图像加法,但是对图像赋予不同的权重(0到1之间),使得它具有混合感或透明感。

# 图像融合
combine = cv2.addWeighted(cv2.resize(img1,(200,200)),0.5,cv2.resize(img2,(200,200)),0.5,0)

cv2.imshow('combine',combine)
cv2.waitKey(0)

 结果:如果融合两个图像,会得到一个透明的效果. 

 

3、图像mask掩模(包括按位AND,OR,NOT和XOR运算)

.
目的:希望将opencv徽标放在图像上方

  1. 如果叠加两个图像,它将改变颜色
  2. 如果融合两个图像,会得到一个透明的效果. 我希望它不透明
  3. 如果它是一个矩形区域,我可以使用ROI按之前描述的操作
  4. 但是opencv徽标并不是矩形,可以按位操作完成相关功能
img2 = cv2.resize(img2,(100,100))

# I want to put logo on top-left corner, So I create a ROI
#首先获取原始图像roi
rows,cols,channels = img2.shape
roi = img1[0:rows, 0:cols ]

#原始图像转化为灰度值
# Now create a mask of logo and create its inverse mask also
img2gray = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)

cv2.imshow('img2gray',img2gray)
cv2.waitKey(0)
'''
将一个灰色的图片,变成要么是白色要么就是黑色。(大于规定thresh值就是设置的最大值(常为255,也就是白色))
'''
#将灰度值二值化,得到ROI区域掩模
ret, mask = cv2.threshold(img2gray, 200, 255, cv2.THRESH_BINARY)

cv2.imshow('mask',mask)
cv2.waitKey(0)

#ROI掩模区域反向掩模
mask_inv = cv2.bitwise_not(mask)

cv2.imshow('mask_inv',mask_inv)
cv2.waitKey(0)

#掩模显示背景
# Now black-out the area of logo in ROI
img1_bg = cv2.bitwise_and(roi,roi,mask = mask)

cv2.imshow('img1_bg',img1_bg)
cv2.waitKey(0)

#掩模显示前景
# Take only region of logo from logo image.
img2_fg = cv2.bitwise_and(img2,img2,mask = mask_inv)
cv2.imshow('img2_fg',img2_fg)
cv2.waitKey(0)

#前背景图像叠加
# Put logo in ROI and modify the main image
dst = cv2.add(img1_bg,img2_fg)
img1[0:rows, 0:cols ] = dst

cv2.imshow('res',img1)
cv2.waitKey(0)
cv2.destroyAllWindows()


img1[0:rows, 0:cols ] = dst

cv2.imshow('res',img1)
cv2.waitKey(0)
cv2.destroyAllWindows()

 结果:

灰度图

 

灰度图

二值化掩模             二值化掩模取反     ROI背景提取        ROI前景提取          ROI前背景融合

最终融合: 

 

 

 

 

### 华为 OD 机试真题文档获取方式 对于准备参加华为 OD 机试的技术人员来说,获取高质量的真题资料是非常重要的。以下是关于如何下载或查看华为 OD 机试真题的相关信息。 #### 文档下载地址 可以通过以下链接访问并下载一份名为“华为OD机试真题.pdf”的资源文件[^1]: - **项目地址**: [https://gitcode.com/Open-source-documentation-tutorial/ee1fb](https://gitcode.com/Open-source-documentation-tutorial/ee1fb) 此仓库提供了与华为 OD 机试相关的试题集合,适合用于备考和技术练习。 #### 题目解析与语言支持 除了直接下载真题外,还可以通过一些博客文章获得针对不同编程语言的具体题解和指导。这些资源涵盖了多种主流开发语言,包括但不限于 Python、C++、Java 和 JavaScript 等[^2]: - **Python** 解析: [华为 OD 机考 Python](https://blog.csdn.net/hihell/category_12199275.html) - **C++** 解析: [华为 OD 机考 C++](https://blog.csdn.net/hihell/category_12199283.html) - **C 语言** 解析: [华为 OD 机考 True C](https://blog.csdn.net/hihell/category_12225286.html) - **Java** 解析: [华为 OD 机考 Java](https://blog.csdn.net/hihell/category_12201821.html) - **JavaScript** 解析: [华为 OD 机考 Js](https://blog.csdn.net/hihell/category_12201825.html) - **Golang** 解析: [华为 OD 机考 Golang](https://blog.csdn.net/hihell/category_12231589.html) 以上链接不仅包含了具体的题目描述,还附带了解决方案以及代码实现示例[^3]。 #### 输入验证的重要性 值得注意的是,在实际编写解决方案时应特别关注输入数据的有效性和合法性检查。例如,当处理用户数量 `n` 的情况下,需确认其是否为正整数;而对于其他参数,则要确保它们均为有效数值类型[^4]。这一步骤能够显著提升程序运行稳定性及准确性。 ```python def validate_input(n, values): """ Validate the input parameters. Args: n (int): Number of users. values (list[int]): List of system consumption values. Returns: bool: Whether all inputs are valid or not. """ if isinstance(n, int) and n > 0 and all(isinstance(x, int) for x in values): return True return False ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DLANDML

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值