特征工程与变量选择:构建高效决策支持系统的关键步骤
1. 引言
在构建高效的决策支持系统(DSS)过程中,特征工程与变量选择是至关重要的环节。通过对原始数据进行有效的特征提取、构造和选择,可以显著提高模型的准确性和泛化能力。本文将详细介绍特征工程与变量选择的基本原理、方法及其在实际应用中的具体步骤。
2. 特征构造
特征构造是指从原始数据中创建新的特征,以更好地捕捉数据中的信息。以下是几种常见的特征构造方法:
-
多项式特征 :通过组合已有特征,创建更高维度的特征空间。例如,给定特征 ( x_1 ) 和 ( x_2 ),可以构造新的特征 ( x_1^2 )、( x_2^2 ) 和 ( x_1 \times x_2 )。
-
交叉特征 :将两个或多个特征组合在一起,形成新的特征。例如,年龄和收入可以组合成“年龄-收入段”,以反映不同年龄段和收入水平之间的关系。
-
日期时间特征 :从日期时间字段中提取年份、月份、星期几等信息,以捕捉时间序列中的周期性模式。
示例:特征构造
假设我们有一个包含用户购买行为的数据集,其中包含用户的年龄(age)、购买金额(purchase_amount)和购买日期(purchase_date)。我们可以构造以下新特征:
用户ID | 年龄 | <
---|