Network in Network 论文学习

本文介绍了一种改进的经典卷积神经网络(CNN)结构,通过在CNN中加入多层感知器(MLP)来减小网络规模,并采用全局平均池化增强网络的稳健性和防止过拟合,实验结果显示改进后的网络性能有所提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


两个创新点:

一)把MLP(multilayer perceptron)放进卷及网络,降低网络大小

    改变如图:

    

二)使用全局均值池化

    1)更合适cnn结构

    2)防止过拟合

    3)使输入的空间平移更稳健


整体结构:

在经典cnn上进行了简单的改进,效果有一定提升。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值