模型参数量(Parameters)和计算量(FLOPs)获取【使用thop】

Tips: 针对部分开源代码没有提供相关计算网络参数量和计算量的代码。这里给出一个通用的获取网络的参数量和计算量的方法。 使用thop即可快速获取

1 模型参数量和计算量

参数量#params 即为网络模型中含有多少个参数,与输入的数据无关,主要与模型的结构有关系;其主要影响模型运算是所需要的内存或显存

计算量#FLOPs 通常使用FLOPs(Floating point operations,浮点运算数量)来表示计算量,其主要来衡量算法/模型的复杂度。论文中一般用GFLOPs来表示,1GFLOPs=10^9 FLOPs;

2 安装thop

pip install thop

3 示例代码

####(如计算如下网络的参数量和计算量)####

import torch
import torch.nn as nn

# SENet
class SELayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(SELayer, self).__init__(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值