P1886 滑动窗口 /【模板】单调队列
题目描述
有一个长为nnn的序列aaa,以及一个大小为kkk的窗口。现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值。
例如,对于序列[1,3,−1,−3,5,3,6,7][1,3,-1,-3,5,3,6,7][1,3,−1,−3,5,3,6,7]以及k=3k = 3k=3,有如下过程:
窗口位置最小值最大值[1 3 -1] -3 5 3 6 7 −13 1 [3 -1 -3] 5 3 6 7 −33 1 3 [-1 -3 5] 3 6 7 −35 1 3 -1 [-3 5 3] 6 7 −35 1 3 -1 -3 [5 3 6] 7 36 1 3 -1 -3 5 [3 6 7]37\def\arraystretch{1.2} \begin{array}{|c|c|c|}\hline \textsf{窗口位置} & \textsf{最小值} & \textsf{最大值} \\ \hline \verb![1 3 -1] -3 5 3 6 7 ! & -1 & 3 \\ \hline \verb! 1 [3 -1 -3] 5 3 6 7 ! & -3 & 3 \\ \hline \verb! 1 3 [-1 -3 5] 3 6 7 ! & -3 & 5 \\ \hline \verb! 1 3 -1 [-3 5 3] 6 7 ! & -3 & 5 \\ \hline \verb! 1 3 -1 -3 [5 3 6] 7 ! & 3 & 6 \\ \hline \verb! 1 3 -1 -3 5 [3 6 7]! & 3 & 7 \\ \hline \end{array}窗口位置[1 3 -1] -3 5 3 6 7 1 [3 -1 -3] 5 3 6 7 1 3 [-1 -3 5] 3 6 7 1 3 -1 [-3 5 3] 6 7 1 3 -1 -3 [5 3 6] 7 1 3 -1 -3 5 [3 6 7]最小值−1−3−3−333最大值335567
输入格式
输入一共有两行,第一行有两个正整数n,kn,kn,k。
第二行nnn个整数,表示序列aaa
输出格式
输出共两行,第一行为每次窗口滑动的最小值
第二行为每次窗口滑动的最大值
输入输出样例 #1
输入 #1
8 3
1 3 -1 -3 5 3 6 7
输出 #1
-1 -3 -3 -3 3 3
3 3 5 5 6 7
说明/提示
【数据范围】
对于50%50\%50%的数据,1≤n≤1051 \le n \le 10^51≤n≤105;
对于100%100\%100%的数据,1≤k≤n≤1061\le k \le n \le 10^61≤k≤n≤106,ai∈[−231,231)a_i \in [-2^{31},2^{31})ai∈[−231,231)。
解题思路
本题需要高效地计算滑动窗口中的最小值和最大值。由于数据规模较大(n ≤ 10^6),暴力解法会超时,因此需要使用单调队列这一数据结构来优化。
核心思想:单调队列
- 最小值计算:维护一个单调递增的双端队列(队头到队尾递增)
- 当新元素小于队尾元素时,不断弹出队尾(保证队列单调性)
- 队头元素即为当前窗口的最小值
- 检查队头元素是否已离开窗口,及时弹出
- 最大值计算:维护一个单调递减的双端队列(队头到队尾递减)
- 当新元素大于队尾元素时,不断弹出队尾(保证队列单调性)
- 队头元素即为当前窗口的最大值
- 检查队头元素是否已离开窗口,及时弹出
时间复杂度:O(n)
每个元素最多入队和出队各一次,因此整体时间复杂度为 O(n),满足题目要求。
C++代码实现
#include <iostream>
#include <vector>
#include <deque>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, k;
cin >> n >> k;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
deque<int> min_q; // 单调递增队列(求最小值)
deque<int> max_q; // 单调递减队列(求最大值)
vector<int> min_ans, max_ans;
// 计算滑动窗口最小值
for (int i = 0; i < n; i++) {
// 移除超出窗口的元素(队头)
if (!min_q.empty() && min_q.front() <= i - k) {
min_q.pop_front();
}
// 维护单调递增特性(从队尾移除大于当前元素的元素)
while (!min_q.empty() && a[min_q.back()] >= a[i]) {
min_q.pop_back();
}
min_q.push_back(i);
// 当窗口形成时记录最小值
if (i >= k - 1) {
min_ans.push_back(a[min_q.front()]);
}
}
// 计算滑动窗口最大值
for (int i = 0; i < n; i++) {
// 移除超出窗口的元素(队头)
if (!max_q.empty() && max_q.front() <= i - k) {
max_q.pop_front();
}
// 维护单调递减特性(从队尾移除小于当前元素的元素)
while (!max_q.empty() && a[max_q.back()] <= a[i]) {
max_q.pop_back();
}
max_q.push_back(i);
// 当窗口形成时记录最大值
if (i >= k - 1) {
max_ans.push_back(a[max_q.front()]);
}
}
// 输出结果
for (int i = 0; i < min_ans.size(); i++) {
cout << min_ans[i] << " ";
}
cout << "\n";
for (int i = 0; i < max_ans.size(); i++) {
cout << max_ans[i] << " ";
}
return 0;
}
代码说明
- 输入处理:
- 使用
ios::sync_with_stdio(false)
和cin.tie(0)
加速输入 - 读取序列长度
n
和窗口大小k
- 读取序列元素到数组
a
- 使用
- 最小值计算:
- 使用双端队列
min_q
维护单调递增序列 - 遍历序列时:
- 检查队头元素是否超出窗口(
i - k
) - 从队尾移除比当前元素大的元素,保持队列单调递增
- 当前元素索引入队
- 当窗口形成(
i ≥ k-1
)时,队头元素即为最小值
- 检查队头元素是否超出窗口(
- 使用双端队列
- 最大值计算:
- 使用双端队列
max_q
维护单调递减序列 - 遍历序列时:
- 检查队头元素是否超出窗口(
i - k
) - 从队尾移除比当前元素小的元素,保持队列单调递减
- 当前元素索引入队
- 当窗口形成(
i ≥ k-1
)时,队头元素即为最大值
- 检查队头元素是否超出窗口(
- 使用双端队列
- 输出结果:
- 先输出所有窗口的最小值序列
- 再输出所有窗口的最大值序列
复杂度分析
- 时间复杂度:O(n),每个元素最多入队和出队各一次
- 空间复杂度:O(n),队列和结果数组最多存储 n 个元素