线性判别函数、判定面以及感知器

本文介绍了线性判别函数和判定面的概念,包括线性机如何将特征空间分为判决区域,以及广义线性判别函数的形成。讨论了两类线性可分的情况,并提供了几何解释。最后,探讨了感知器最小化原则及其在样本分类中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性判别函数和判定面

标签: 模式分类


线性机

不知道你还记不记得前面讲过的判别函数的问题(见概述,贝叶斯策略,最大似然估计
一个”判别函数”是指由x的各个分量的线性组合而成的函数: g(x)=wTx+w0
这里 w 是”权向量”, w0 被称为”阈值权”或者”偏置”,一般情况下有c个这样的判别函数,分别对应c类中的一类,我们总是选取 gi 取得最大值的那个类型(希望明白的是,这个是使得后验概率最大的那个类型,而有一种可能的线性判别函数是源于分布为正态分布,而且假设 Σi=σ2I
其实上面那种定义判别函数得到的分类器叫做”线性机”,线性机把特征空间分为c个判决区域 Ri ( i=1 ... c ),当 x Ri 中时, gi 取得最大值,如果 ij,gi=gj 可以得到一个将 Ri

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值