一、课题名称
基于深度学习的脑肿瘤图像分类识别系统设计与实现
二、课题背景
脑肿瘤作为一种常见的致命疾病,对患者的生命和健康带来了巨大的威胁。随着医学影像技术的发展,MRI(磁共振成像)图像已广泛应用于脑肿瘤的诊断中。然而,传统的人工诊断方法通常依赖于医生的经验,容易受到主观因素的影响。随着计算机视觉和深度学习技术的快速发展,基于自动化的图像处理和识别系统能够有效提高脑肿瘤的早期诊断准确性,并大大减少诊断过程中的误差。
深度学习,尤其是卷积神经网络(CNN)在图像处理领域的成功,已成为医学图像分析的核心技术之一。因此,构建一个基于深度学习的脑肿瘤图像分类识别系统,将极大提高脑肿瘤检测的准确性和效率,对医疗领域具有重要的应用价值。
三、研究目标与任务
研究目标
本课题的目标是设计并实现一个基于深度学习的脑肿瘤图像分类识别系统,具体目标包括:
- 数据预处理:通过图像增强和归一化等技术对脑肿瘤图像进行预处理,提高模型的训练效果。
- 模型设计:使用卷积神经网络(CNN)构建图像分类模型,识别MRI图像中的脑肿瘤。
- 模型训练与评估:在公开的脑肿瘤数据集上训练模型,并通过评估指标(如准确率、召回率、F1分数等)对模型进行性能评估。
- 系统实现:实现一个可执行的图像分类系统,能够接收输入的MRI图像,并输出是否存在肿瘤的结果。
研究任务
- 收集与处理数据