点云基础

本文深入探讨了点云处理的核心概念和技术,包括点云的基本定义、格式、三维特征点的计算、过滤器的应用、关键点的检测、树结构在点云中的作用以及样本一致性和分割算法。特别关注点云在三维重建、物体识别和自动驾驶等领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,点云的概念

点云是在和目标表面特性的海量点集合。

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。

根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。

结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。

在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)

点云的格式:; *.pts; *.asc ; *.dat; *.stl ;*.imw;*.xyz;

1,点云

点云是用于表示多维点集合的数据结构,通常用于表示三维数据。在三维点云中,这些点通常表示底层采样曲面的XYZ几何坐标。当存在颜色信息时,点云变为4D

2PCD文件格式

用于存储多维点数据的简单文件格式。它由一个文本头(带下面的字段)和一个ASCII(带单独行上的点)或二进制(PC的点向量的内存副本)格式的数据组成。

VERSION – PCD文件版本(通常.7)

FIELDS -点可以具有的每个维度/字段的名称(例如字段x y z

SIZE -每个维度的大小(字节)(e.g. a float is 4)

TYPE -作为字符的每个维度的类型(I= signed,U= unsigned,F= float)

COUNT -每个维度中元素的数量(例如xyz只有1个,而直方图只有N个)

WIDTH – 点云数据的宽度

HEIGHT – 点云数据的高度

VIEWPOINT –可获取的点云观察角度:平移(tx ty tz+四元数(qw qx qy qz

POINTS – 总点数

DATA – 点云数据的存储类型-ASCII 或者 Binary

HEIGHT – 点云数据的高度

VIEWPOINT –可获取的点云观察角度:平移(tx ty tz+四元数(qw qx qy qz

POINTS – 总点数

DATA – 点云数据的存储类型-ASCII 或者 Binary

二,三维特征点

1,计算点云中的曲面法线

       曲面法线是几何曲面的重要属性,在许多领域(如计算机图形应用程序)中被大量使用,以应用生成阴影和其他视觉效果的正确光源。

给定一个几何曲面,将曲面上某个点的法线方向推断为该点上垂直于曲面的向量通常是很简单的。但是,由于我们获取的点云数据集代表真实曲面上的一组点采样,因此有两种可能:

a,利用曲面网格技术,从获取的点云数据集中获取下垫面,然后从网格中计算出曲面的法线;

b,直接使用粗略估计的方法从点云数据集中推断出曲面法线。

理论基础:

虽然存在许多不同的法线估计方法,但是我们将集中讨论一个最简单的方法,并且公式如下。确定表面上的点法线的问题近似于估计平面切线的法线的问题,这又变成最小二乘平面拟合估计问题。

因此,估计表面法向的解决方案简化为对从查询点的最近邻创建的协方差矩阵的特征向量和特征值的分析(或PCA-主成分分析)。更具体地说,对于每个点Pi,我们将协方差矩阵C组合如下

其中k是在Pi的邻域中考虑的点邻域的数目,𝑝¯p表示最近邻域的3D质心,λj是协方差矩阵的第j个特征值,𝑣𝑗(vj) ⃗是第j个特征向量。

要从PCL中的一组点估计协方差矩阵,可以使用:

一般来说,由于没有数学方法来求解法向量的符号,因此通过主成分分析(PCA)计算的法向量的方向是不明确的,并且在整个点云数据集上方向不一致。下图显示了这些影响对表示厨房环境一部分的较大数据集的两个部分的影响。图的右侧显示扩展高斯图像(EGI),也称为法向球体,它描述了所有从球体点云数据的法向量方向。由于数据集是2.5维的,是从一个单一的视角获取的,因此法线应该只出现在EGI中球体的一半上。但是,由于方向不一致,它们分布在整个球体上

如果视点vp事实上是已知的,那么此问题就无法解决。要使所有法线一致地朝向视点,它们需要满足以下等式

下图显示了上图中数据集中的所有法线始终指向视点后的结果。

选择合适的比例

    如前所述,需要根据点的周围点邻域支持(也称为k邻域)来估计一点处的曲面法线。最近邻估计问题的细节提出了一个正确的比例因子的问题:给定一个采样点云数据集,在确定一个点的最近邻集时应该使用的正确 k r 值是多少?

这个问题非常重要,并且在点特征表示的自动估计(即,没有用户给定的阈值)中构成限制因素。为了更好地说明这一问题,下图展示了选择小尺度(即小rk)与大尺度(即大rk)的效果。图的左边部分描绘了一个合理选择的比例因子,估计的表面法线近似垂直于两个平面,小的边缘在整个桌子上可见。但是,如果比例因子太大(右侧部分),并且因此相邻曲面的邻域集合是来自相邻曲面的更大覆盖点,则估计的点特征表示会失真,在两个平面的边上旋转曲面法线,并且会涂抹边并抑制精细细节

三,过滤器

在处理三维数据时,过滤数据的原因有很多:

限制范围(通过滤波器

采样(体素网格)

异常值去除

选择索引

投影

通滤波器

在一维中筛选出指定范围之外的点。

统计异常值剔除

基于其局部点密度过滤点。移除相对于整个云的平均点密度稀疏的点

下采样到体素网格

将云体素化为三维网格。每个占据体素由其内部的点的质心近似

提取索引根据分割算法输出的索引从点云中提取点的子集。

什么是关键点?

关键点(也称为兴趣点)只是在某种程度上被识别为相关的点。一个好的关键点检测器将发现具有以下特性的点:

稀疏性:通常,场景中只有一小部分点是关键点。

可重复性:如果一个点被确定为一个点云中的关键点,则也应在类似点云中的相应位置找到一个关键点。(这些点通常被称为“稳定”。)

显著性:每个关键点周围的区域应该有一个独特的形状或外观,可以被一些特征描述符捕获。

为什么要计算关键点?

有些特性的计算成本很高,而且在每一点上计算它们都是令人望而却步的。识别少量位置的关键点在这里计算特征描述符可能是最有效的。当搜索对应点时,在非描述点计算的特征将导致不明确的特征对应。通过忽略非关键点,可以减少匹配点时的错误。

检测3D-SIFT关键点

在关键点计算PFH特征

寻找对应关系

五,树

k-d树,或称k维树,是计算机科学中用来组织k维空间中若干点的数据结构。它是一个二叉搜索树,具有其他约束。K-d树对于距离和最近邻搜索非常有用

 

统计异常值剔除

基于其局部点密度过滤点。移除相对于整个云的平均点密度稀疏的点

下采样到体素网格

将云体素化为三维网格。每个占据体素由其内部的点的质心近似

 提取索引根据分割算法输出的索引从点云中提取点的子集。

 

四,关键点 

什么是关键点?

关键点(也称为兴趣点)只是在某种程度上被识别为相关的点。一个好的关键点检测器将发现具有以下特性的点:

稀疏性:通常,场景中只有一小部分点是关键点。

可重复性:如果一个点被确定为一个点云中的关键点,则也应在类似点云中的相应位置找到一个关键点。(这些点通常被称为“稳定”。)

显著性:每个关键点周围的区域应该有一个独特的形状或外观,可以被一些特征描述符捕获。

为什么要计算关键点?

有些特性的计算成本很高,而且在每一点上计算它们都是令人望而却步的。识别少量位置的关键点在这里计算特征描述符可能是最有效的。当搜索对应点时,在非描述点计算的特征将导致不明确的特征对应。通过忽略非关键点,可以减少匹配点时的错误。

五,树

k-d树,或称k维树,是计算机科学中用来组织k维空间中若干点的数据结构。它是一个二叉搜索树,具有其他约束。K-d树对于距离和最近邻搜索非常有用

 这位老兄有详细介绍:https://www.cnblogs.com/eyeszjwang/articles/2429382.html

 

六,样本一致性和分割 

随机样本一致性(RANSAC)算法假设数据由内联和离群两部分组成。内环的分布可以用一组参数和一个模型来解释。外围数据与模型不符

 

基本操作:行示例

1,选择样本集-2个点

2,计算模型-----直线方程

3,计算和计算内联-例如波段

4,重复,直到足够自信-例如95%

还有PCL中也提供了许多方法

七,配准

 

 

<think>首先,用户的问题是:“我想学习3D点云技术的基础知识 请问3D点云技术入门 学习路径 基础教程”。这是一个关于入门3D点云技术的请求。 我需要根据系统级指令来构建我的回答: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识,例如[^1]。 - 回答结构清晰,帮助用户逐步解决问题。 - 参考站内引用:[^1], [^2], [^3]。 站内引用提供了一些信息: - [^1]:关于点云开发,包括使用PointNet进行分类深度学习框架。 - [^2]:使用Open3D的Python代码示例,加载点云并进行体素化。 - [^3]:关于合并点云的方法。 用户的问题是关于入门学习路径的,所以我应该提供一个结构化的学习计划,涵盖基础知识。 我的回答结构应该清晰: 1. **介绍3D点云技术**:简要解释什么是点云,为什么重要。 2. **学习路径**:逐步指导入门,包括基础概念、工具、实践。 3. **基础教程**:推荐一些资源或示例。 4. **生成相关问题**:在末尾添加相关问题。 由于用户提到了“基础教程”,我可以引用提供的站内引用作为资源。例如,[^2]有Open3D的代码示例,[^1]提到PointNet。 在回答中,我需要自然地添加引用标识。例如,如果提到点云分类,可以引用[^1]。 数学表达式:用户的问题不直接涉及数学,但如果有机会,我可以加入一些。例如,点云处理可能涉及几何变换,如旋转矩阵:$R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$。但在基础入门中,可能不需要太多数学,除非必要。 生成相关问题:在末尾添加几个相关问题,如“如何选择点云处理工具?”或“点云数据有哪些常见应用?”。 完整回答框架: - **开头**:欢迎用户,简要介绍点云技术。 - **学习路径**: - 步骤1:了解点云基础(定义、应用)。 - 步骤2:学习点云获取(传感器如LiDAR)。 - 步骤3:掌握点云处理工具(如PCL, Open3D)。 - 步骤4:实践基本操作(加载、可视化、滤波)。 - 步骤5:进阶学习(特征提取、分类、深度学习)。 - **基础教程**:提供简单示例,如使用Open3D加载点云(参考[^2])。 - **资源推荐**:基于引用,推荐学习材料。 - **结尾**:鼓励实践,添加相关问题。 确保引用自然:例如,“点云分类可以使用PointNet等深度学习模型[^1]。”或“在Open3D中,加载点云很简单[^2]。” 生成相关问题: 1. 点云数据如何获取? 2. 点云处理有哪些常用算法? 3. 如何将点云应用于实际项目? 最后,使用中文回答。</think>### 3D点云技术入门学习路径与基础教程 欢迎学习3D点云技术!点云是一种表示三维物体表面点的集合数据(每个点包含坐标属性,如颜色或法向量),广泛应用于自动驾驶、机器人导航、三维重建等领域[^1]。以下是一个结构化的学习路径,从零基础开始,逐步深入。我会基于可靠资源(包括站内引用)提供教程建议,确保内容真实可靠。学习路径分为五个步骤,每个步骤包含核心概念、实践建议基础教程。 #### 步骤1: 理解点云基础概念(1-2周) - **核心概念**:点云是三维空间中离散点的集合,通常由LiDAR或深度相机获取。关键术语包括点密度、噪声、法向量(表示点表面方向)坐标系(如笛卡尔坐标系)。数学上,一个点云可表示为集合 $P = \{p_i | p_i = (x_i, y_i, z_i, \text{attributes})\}$,其中每个点 $p_i$ 包含位置属性。 - **实践建议**:阅读入门资料,了解点云在真实世界的应用(如自动驾驶中的障碍物检测)。 - **基础教程**: - 推荐资源:阅读“点云开发:从入门到精通的全面教程”[^1],它覆盖了点云的定义基础处理流程。 - 动手练习:无代码,仅通过可视化工具(如MeshLab)观察点云数据,理解点云结构。 #### 步骤2: 掌握点云处理工具(2-3周) - **核心概念**:学习常用开源库,如Open3D(Python友好)或PCL(C++为主)。这些工具支持点云加载、滤波(如降噪)可视化。例如,点云滤波常用高斯滤波算法,数学上基于卷积:$G(x,y,z) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2+y^2+z^2}{2\sigma^2}}$,其中 $\sigma$ 是标准差。 - **实践建议**:安装Python环境(推荐Anaconda),并配置Open3D库。 - **基础教程**(基于引用[^2]): - 示例代码:加载点云并进行体素化(简化点云)。以下代码来自站内引用[^2],演示基础操作: ```python import open3d as o3d import numpy as np # 加载点云 print("->正在加载点云...") pcd = o3d.io.read_point_cloud("bunny.ply") # 使用示例数据集 print("原始点云:", pcd) # 体素化点云(降采样) print('执行体素化点云') voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=0.005) print("正在可视化体素...") o3d.visualization.draw_geometries([voxel_grid]) # 可视化结果 ``` - 操作指南:运行代码(需下载点云数据集,如Stanford Bunny),观察体素化效果。体素化将点云划分为小立方体,减少数据量,便于后续处理。 #### 步骤3: 学习点云基本操作(3-4周) - **核心概念**:点云操作包括滤波(去除噪声)、配准(对齐多个点云分割(分离不同对象)。配准常用ICP(Iterative Closest Point)算法,优化目标是最小化点对距离:$$\min_{R,t} \sum \|Rp_i + t - q_i\|^2$$,其中 $R$ 是旋转矩阵,$t$ 是平移向量。 - **实践建议**:从简单操作开始,如使用Open3D实现点云滤波(例如统计滤波)。 - **基础教程**: - 推荐资源:参考站内引用[^3],学习点云合并技术。例如,合并不同字段的点云(如位置颜色)时,需创建新点云类型并复制数据。 - 动手练习:扩展步骤2的代码,添加滤波操作: ```python # 添加统计滤波(去除离群点) print("执行统计滤波...") cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0) filtered_pcd = pcd.select_by_index(ind) o3d.visualization.draw_geometries([filtered_pcd]) ``` #### 步骤4: 进阶到特征提取与深度学习(4-6周) - **核心概念**:点云特征包括局部描述符(如FPFH)全局特征。深度学习模型(如PointNet)可直接处理点云,实现分类或分割。PointNet使用对称函数处理无序点集,数学表示为 $f(\{x_i\}) = g(h(x_i))$,其中 $h$ 是逐点MLP,$g$ 是池化函数[^1]。 - **实践建议**:结合TensorFlow或PyTorch框架,复现简单模型。 - **基础教程**: - 推荐资源:站内引用[^1]详细介绍了PointNet用于点云分类的端到端流程。可从开源项目(如GitHub上的PointNet实现)入手。 - 动手练习:使用预训练PointNet模型(例如在Model Zoo下载)对点云进行分类。 #### 步骤5: 项目实践与整合(持续) - **核心概念**:整合所学,构建完整应用,如三维重建或目标检测。注意点云数据的挑战(如噪声密度变化)。 - **实践建议**:参与Kaggle点云竞赛或开源项目。 - **基础教程**:尝试小型项目,例如:使用Open3D实现点云配准可视化,参考官方文档引用[^2][^3]。 ### 学习资源总结 - **免费资源**:Open3D官方教程(Python版)、PCL文档。 - **付费资源**:Udemy课程“3D Point Cloud Processing with Python”。 - **站内引用利用**:引用[^1]提供深度学习框架指南,引用[^2]给出Open3D代码范例,引用[^3]覆盖点云合并技巧。建议优先阅读这些资料。 学习点云技术需要理论与实践结合:从基础概念开始,逐步过渡到代码实践。每天投入1-2小时,2-3个月可达入门水平。遇到问题,多查阅文档社区(如Stack Overflow)。保持动手实践是关键!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值