Flink实时读取Kafka数据写入Clickhouse并实时展示

该博客介绍了使用Flink1.11.2从Kafka消费数据,通过Scala编写模拟数据生产者,然后将数据写入Clickhouse,并利用Flink的JDBC connector实现数据流处理。最后,通过Tableau2020.2进行数据可视化,展示了数据从生产、处理到展示的全链路流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整体架构图

工具

Flink 1.11.2

Scala 2.11

Tableau 2020.2

一、模拟发送数据

新建一个类KafkaProducer用来模拟产生消费数据,这里是产生tab作为分隔符的数据,生产里面很多是json的数据,flink解析json可以看我另一篇博客:Flink解析kafka的json字段并利用Flink CEP实时监控订单数据写入MySQL

代码如下:

package TopNitems

import java.text.SimpleDateFormat
import java.time.{LocalTime, ZonedDateTime}
import java.time.format.DateTimeFormatter
import java.util.{Date, Locale, Properties}

import scala.io.Source
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}

import Array._
import scala.util.Random.shuffle


object KafkaProducers {
  def main(args: Array[String]): Unit = {
    SendtoKafka("test")
  }
  def SendtoKafka(topic:String): Unit = {
    val pro=new Properties()
    pro.put("bootstrap.servers", "192.168.226.10:9092")
    pro.setProperty("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
    pro.setProperty("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
    val producer=new KafkaProducer[String,String](pro)
    var member_id= range(1,10)
    var goods=Array("Milk","Bread","Rice","Nodles","Cookies","Fish","Meat","Fruit","Drink","Books","Clothes","Toys")
    //var ts=DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss",Locale.CHINA).format( ZonedDateTime.now())
    while (true) {
      var ts=new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date())
      var msg = shuffle(member_id.toList).head + "\t" + shuffle(goods.toList).head + "\t" + ts+"\t"+"\n"
      print(msg)
      var record = new ProducerRecord[String, String](topic, msg)
      producer.send(record)
      Thread.sleep(2000)
    }
    //val source=Source.fromFile("C:\\UserBehavior.csv")
    //for (line<-source.getLines()){
    // val record=new ProducerRecord[String,String](topic,line)

    //print(ts)
    producer.close()



  }

}

1.启动ZooKeeper

./zkServer.sh start

.2.启动Kafka

./kafka-server-start.sh -daemon $KAFKA_HOME/config/server.properties

3.创建topic

./kafka-topics.sh --create --zookeeper 192.168.226.10:2181 --replication-factor 1 --partitions 1 --topic test

查看topic是否创建成功

./kafka-topics.sh --list --zookeeper 192.168.226.10:2181

4.在IDEA运行KafkaProducer,可以看到每隔2秒产生一个消费

启动监听

./kafka-console-consumer.sh --topic test --from-beginning --bootstrap-server 192.168.226.10:9092

测试成功,说明可以被消费

 

二、数据写入Clickhouse 

  Clickhouse可以直接作为Kafka的Consumer,这个是官网介绍,格式这里查看,但是直接消费,没有ETL过程,我们还是用flink来消费,方便其他处理。

Flink 在 1.11.0 版本对其 JDBC connector 进行了一次较大的重构,包的名字也不一样:

二者对 Flink 中以不同方式写入 ClickHouse Sink 的支持情况如下:

 
API名称flink-jdbcflink-connector-jdbc
DataStream不支持支持
Table API (Legecy)支持不支持
Table API (DDL)不支持不支持

本次使用flink 1.11.2版本,所以采用的方式为flink-connector-jdbc+DataStream的方式写入数据到ClickHouse

先添加依赖

<dependency>
			<groupId>org.apache.flink</groupId>
			<artifactId>flink-connector-jdbc_2.11</artifactId>
			<version>1.11.2</version>
		</dependency>
		<dependency>
			<groupId>ru.yandex.clickhouse</groupId>
			<artifactId>clickhouse-jdbc</artifactId>
			<version>0.2.4</version>
		</dependency>
		<!-- 添加 Flink Table API 相关的依赖 -->
		<dependency>
			<groupId>org.apache.flink</groupId>
			<artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId>
			<version>${flink.version}</version>
			<scope>provided</scope>
		</dependency>
		<dependency>
			<groupId>org.apache.flink</groupId>
			<artifactId>flink-table-api-scala-bridge_${scala.binary.version}</artifactId>
			<version>${flink.version}</version>
		</dependency>
		<dependency>
			<groupId>org.apache.flink</groupId>
			<artifactId>flink-table-common</artifactId>
			<version>${flink.version}</version>
			<scope>provided</scope>
		</dependency>

代码如下,这里采用jdbc的方式写入,每5条批量写入一次

package TopNitems

import java.sql.PreparedStatement
import java.text.SimpleDateFormat
import java.util.{Date, Properties}

import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.connector.jdbc.{JdbcConnectionOptions, JdbcExecutionOptions, JdbcSink, JdbcStatementBuilder}
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.{CheckpointingMode, TimeCharacteristic}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.api.scala._
import org.apache.flink.table.descriptors.Kafka


//当前版本的 flink-connector-jdbc,使用 Scala API 调用 JdbcSink 时会出现 lambda 函数的序列化问题。我们只能采用手动实现 interface 的方式来传入相关 JDBC Statement build 函数
class CkSinkBuilder extends JdbcStatementBuilder[(Int, String, String)] {
  def accept(ps: PreparedStatement, v: (Int, String, String)): Unit = {
    ps.setInt(1, v._1)
    ps.setString(2, v._2)
    ps.setString(3, v._3)
  }
}

object To_CK {
  def main(args: Array[String]): Unit = {
  
    //获得环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1) //设置并发为1,防止打印控制台乱序
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) //Flink 默认使用 ProcessingTime 处理,设置成event time
    val tEnv = StreamTableEnvironment.create(env) //Table Env 环境
   //从Kafka读取数据
    val pros = new Properties()
    pros.setProperty("bootstrap.servers", "192.168.226.10:9092")
    pros.setProperty("group.id", "test")
    pros.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    pros.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    pros.setProperty("auto.offset.reset", "latest")
    import org.apache.flink.api.scala._
    val dataSource = env.addSource(new FlinkKafkaConsumer[String]("test", new SimpleStringSchema(), pros))
    val sql="insert into ChinaDW.testken(userid,items,create_date)values(?,?,?)"
    val result = dataSource.map(line => {
      val x = line.split("\t")
      //print("收到数据",x(0),x(1),x(2),"\n")
      val member_id = x(0).trim.toLong
      val item = x(1).trim
      val times = x(2).trim
      var time = 0l
      try{time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(times).getTime} //时间戳类型
      catch {case e: Exception => {print( e.getMessage)}}
      (member_id.toInt, item.toString ,time.toLong)
    }).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[(Int, String, Long)](Time.seconds(2)) {
        override def extractTimestamp(t: (Int, String, Long)): Long = t._3
      }).map(x=>{(x._1,x._2,new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(x._3))}) //时间还原成datetime类型
        //result.print()
        result.addSink(JdbcSink.sink[(Int,String,String)](sql,new CkSinkBuilder,new JdbcExecutionOptions.Builder().withBatchSize(5).build(),
          new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
            .withUrl("jdbc:clickhouse://XX.XX.XX.XX:8123")
            .withDriverName("ru.yandex.clickhouse.ClickHouseDriver")
            .withUsername("default")
            .build()
        ))
 


      env.execute("To_CK")
  }


}

到Clickhouse查询,数据已经成功写入

三、利用Tableau进行可视化

可视化环节就比较简单了,这里选择了Tableau连接Clickhouse,因为以下原因:

1.简单方便,0代码完成各种高大上可视化

2.快速开发下面这个图大概就用了2分钟就搞定了

3.支持数据源多,现在用clickhouse,将来就算换成mysql,阿里云或者其他各种文件一样支持,只需要更改链接就可以了

这里要说明一下,tableau必须2020版本以上,不然连接clickhouse可能发生字段被截取的情况。。

首先安装好clickhouse的ODBC驱动,我安装的是clickhouse-odbc-1.1.7-win64.msi,然后在控制面板设置好ODBC的连接,如图

然后tableau配置clickhouse的ODBC,具体可以百度一下 Tableau如何连接Clickhouse

简单拖拉做成下面这个表,现在还剩一个问题,Tableau如何作为大屏,自动刷新? 强大的tableau当然有解决方法:

方法一:发布到Tableau server,然后利用浏览器自带的网页刷新功能,例如QQ浏览器,网址加&: refresh=yes,可以参考这个博客

方法二:安装Tableau拓展程序 ,到官网找到Auto Refresh这个插件,然后拖进去就可以直接用了,可以看到右下角有一个刷新的倒计时。

到此,整个项目结束了。

在IntelliJ IDEA中使用Scala连接数据库通常涉及以下步骤: 1. **添加依赖**: 首先,你需要在Scala项目中引入数据库驱动库。如果你使用的是PostgreSQL,可以添加`postgresql`或`slick`库(Slick是Scala的ORM框架)。在构建.sbt文件中加入相应的dependency,例如: ```scala libraryDependencies ++= Seq( "com.typesafe.slick" %% "slick" % "4.4.3", "org.postgresql" % "postgresql" % "42.3.1" ) ``` 2. **配置数据源**: 使用Slick的话,创建一个`DatabaseConfig`类,提供数据库连接信息: ```scala import slick.jdbc.PostgresProfile.api._ object DatabaseConfig { val dbUrl = "jdbc:postgresql://localhost/mydatabase" val driver = "org.postgresql.Driver" val user = "username" val password = "password" } ``` 3. **创建DB对象**: 使用Slick的`Database.forConfig`函数来获取数据库实例: ```scala val db = Database.forConfig("myDatabase") ``` 4. **定义表模型**: 如果需要操作特定的表,定义对应的表对象(Table[YourTable]),映射字段。 5. **执行查询**: 使用Slick的API执行CRUD操作,如查询、插入、更新和删除: ```scala import slick.jdbc.MyTableComponent.table class MyTable(tag: Tag) extends Table[MyModel](tag, "my_table") { // 定义列... } val myTable = TableQuery[MyTable] val rows = Await.result(db.run(myTable.filter(_.someColumn === SomeValue).result), Duration.Inf) ``` 6. **处理事务**: Slick支持异步操作,通常配合`Future`和`Await`来处理事务。 记得在IDEA中启用Scala插件,配置好Slick的支持,这样就可以愉快地编写和测试数据库操作了。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值