本文是对《智能风控典藏版合集》中涉及到的关系网络及图谱、图算法作的总结笔记,涉及到的文章有《图算法在网络黑产挖掘中的思考》、《Frauder算法在京东关系网络反欺诈中的应用》、《关系图谱在贝壳找房风控体系的应用于实践》、《金融风控反欺诈之图算法》。
《图算法在网络黑产挖掘中的思考》
这篇文章通过图表征学习将图结构的节点属性以及结构特征映射到一个节点低维空间,由此产生一个节点特征,然后再去进行下游的任务,如用户定性等。图表征学习的关键点在于在进行低维的映射当中需要保留原始图的结构和节点属性信息。
这里的节点嵌入特征就是图神经网络的Embedding过程,传统的graph embedding方法有DeepWalk/Node2vec。具体过程可简化如下图,摘自知乎《深度学习中不得不学的Graph Embedding方法》
图算法GraphSAGE的核心思想是邻居抽样和特征聚合。聚合过程是节点自身的属性特征和其抽样的邻居节点特征分别作一次线性变