关系网络及图算法的应用总结

本文总结了关系网络和图算法在智能风控中的应用,包括图算法在网络黑产挖掘、京东关系网络反欺诈、贝壳找房风控体系和金融风控反欺诈中的实践。重点讨论了图神经网络、Frauder算法、社区发现算法以及如何解决孤立点和异质性问题。同时,提到了图谱在反欺诈中的统计分析、Embedding算法和传播关系的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      本文是对《智能风控典藏版合集》中涉及到的关系网络及图谱、图算法作的总结笔记,涉及到的文章有《图算法在网络黑产挖掘中的思考》、《Frauder算法在京东关系网络反欺诈中的应用》、《关系图谱在贝壳找房风控体系的应用于实践》、《金融风控反欺诈之图算法》。

 

《图算法在网络黑产挖掘中的思考》

      这篇文章通过图表征学习将图结构的节点属性以及结构特征映射到一个节点低维空间,由此产生一个节点特征,然后再去进行下游的任务,如用户定性等。图表征学习的关键点在于在进行低维的映射当中需要保留原始图的结构和节点属性信息。

图表征学习.png

       这里的节点嵌入特征就是图神经网络的Embedding过程,传统的graph embedding方法有DeepWalk/Node2vec。具体过程可简化如下图,摘自知乎《深度学习中不得不学的Graph Embedding方法

Embedding.png

       图算法GraphSAGE的核心思想是邻居抽样和特征聚合。聚合过程是节点自身的属性特征和其抽样的邻居节点特征分别作一次线性变

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值