逻辑回归作为一种基础的分类模型,在机器学习中占据着不可替代的位置。回归是用曲线拟合数据,逻辑回归并非一种回归运算,而是分类算法。接下来进行参数估计,目的是使用现有样本(已分类)训练得到一些参数θ(有些文章中是w和b),使得θ与x的线性组合z映射到sigmoid函数上,可以使这些训练集样本x出现现有分类结果的概率L(θ)极大化,也就是极大似然函数取最大值(此处也可考虑极大似然函数加一个负号转化成损失函数,使损失函数极小化也可达到同样目的)。通过极大似然函数最大化可以推导出θ的求解公式,根据不同的似然函数可以得到两种θ的求解方法,分别是最优化算法中的随机梯度下降法和全批量梯度下降法。最终得出这条分类线,即为最大程度上区分两种或多种类别的、依赖于参数θ的分类线。最终使用这些θ对测试集进行预测,计算预测精度,观察Logistic模型拟合情况。
(纯原创,有错希望大家指正)
目录
1. Logistic原理
1.1 Sigmoid函数
Sigmoid函数是一个值域为(0,1)的s型曲线,它可以将线性函数的任意值映射到s曲线上,作为预计判为正类别(class1)的概率。我们可以任意设定阈值,假设设定为0.5,则映射到Sigmoid函数上值在(0,0.5)内的被判为class0,在(0.5,1)内被判为class1。函数图像如下:
1.2 前提假设
仅对于一个样本而言,有:
一式是用sigmoid函数计算出来的概率,第三个公式为一、二式的整合。
1.3 构造似然函数或损失函数
对于多个独立样本而言,由上述第三个公式构造似然函数:
其中
为方便求解将似然函数取对数,得到其对数似然函数:
求对数似然函数的极大值,或者由其构造逻辑回归的对数交叉熵损失函数,只需在前面加负号即可。
关于损失函数的种类此处插入图示:
1.4 参数估计
对极大似然函数进行一系列偏导为零求极值:
得到最终θ的参数估计,是对应于全批量梯度下降的公式:
还有一种随机梯度下降公式:
全批量梯度下降每次计算都需用到全部数据,计算复杂但在凸函数时可以得到全局最优解;而随机梯度下降每次只需用到一组数据,计算简单但是得到的是局部最优解。
1.5 进行预测并计算精度
有监督学习的好处在于有正确分类的测试集以供测试,通过测试集测试结果计算训练模型的精度,以期判断模型的优劣。
2. 代码实现
2.1 简单案例
2.1.1 库函数导入
import numpy as np #基础库
import matplotlib.pyplot as plt #画图库
import seaborn as sns #画图库
from sklearn.linear_model import LogisticRegression #逻辑回归模型函数
2.1.2 模型训练
数据集分为特征数组与标签数组:
#构造数据集
x_features=np.array([[-1,-2],[-2,-1],[-3,-2],[1,3],[2,1],[3,2]])
y_label=np.array([0,0,0,1,1,1])
#调用逻辑回归模型
a=LogisticRegression()
#用逻辑回归模型拟合构造的数据集
a=a.fit(x_features,y_label)#其拟合方程为y=w0 + w1*x1 + w2*x2
2.1.3 模型参数输出
拟合方程为y=w0 + w1x1 + w2x2,输出模型参数:
#查看其对应模型的w
print('the weight of Logistic Regression:',a.coef_)
#查看其对应模型的w0
print('the intercept(w0) of Logistic Regession:',a.intercept_) #第一遍忘记打二者间的逗号
2.1.4 数据及模型可视化
根据标签类别表示为不同颜色:
#可视化构造的数据样本点
plt.figure()
plt.scatter(x_features[:,0],x_features[:,1],c=y_label,s=50,cmap='viridis') #别的c都是颜色,为什么这里是y_label
plt.xlabel('X')
plt.ylabel('Y') #设置X轴标签和Y轴标签
plt.title('Dataset')
plt.show()
#可视化决策边界
plt.figure()
plt.scatter(x_features[:,0],x_features[:,1],c=y_label,s=50,cmap='viridis')
plt.title('Dataset')
nx,ny=200,100
x_min,x_max=plt.xlim()
y_min,y_max=plt.ylim() #设定x,y坐标轴
x_grid,y_grid=np.meshgrid(np.linspace(x_min,x_max,nx),np.linspace(y_min,y_max,ny)) #做(x_min,x_max,nx)与(y_min,y_max,ny)的笛卡尔积,生成网格点坐标矩阵(二维三维都可以)
z_proba=a.predict_proba(np.c_[x_grid.ravel(),y_grid.ravel()]) #predict Probability estimates. 对X的每条样本进行概率估计
z_proba=z_proba[:,1].reshape(x_grid.shape) #考虑正类为1,计算判为1类的概率值
plt.contour(x_grid,y_grid,z_proba,[0.5],linewidths=2.,colors='blue')#0.5 #绘制轮廓线,level的数字确定阈值
<matplotlib.contour.QuadContourSet at 0x2773ab2eb48>
下面可视化地对新样本进行预测:
plt.figure()
## new point 1
x_features_new1 = np.array([[0, -1]])
plt.scatter(x_features_new1[:,0],x_features_new1[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))
"""
Axes.annotate(s, xy, *args, **kwargs)
s:注释文本的内容
xy:被注释的坐标点,二维元组形如(x,y)
xytext:注释文本的坐标点,也是二维元组,默认与xy相同
xycoords:被注释点的坐标系属性
arrowprops:箭头的样式,dict(字典)型数据,如果该属性非空,则会在注释文本和被注释点之间画一个箭头。
connectionstyle就是描绘箭头的样式的,例如箭头的一个弧度、防止箭头被曲线遮挡之类的
"""
## new point 2
x_features_new2 = np.array([[1, 2]])
plt.scatter(x_features_new2[:,0],x_features_new2[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))
## 训练样本
plt.scatter(x_features[:,0],x_features[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
# 可视化决策边界(画出分界线)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')
plt.show()
2.1.5 模型预测
##在训练集和测试集上分布利用训练好的模型进行预测
y_label_new1_predict=a.predict(x_features_new1)
y_label_new2_predict=a.predict(x_features_new2)
print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)
##由于逻辑回归模型是概率预测模型(前文介绍的p = p(y=1|x,\theta)),所有我们可以利用predict_proba函数预测其概率
y_label_new1_predict_proba=a.predict_proba(x_features_new1)
y_label_new2_predict_proba=a.predict_proba(x_features_new2)
print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)
输出结果为:
The New point 1 predict class:
[0]
The New point 2 predict class:
[1]
The New point 1 predict Probability of each class:
[[0.69567724 0.30432276]]
The New point 2 predict Probability of each class:
[[0.11983936 0.88016064]]
可以发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),X_new2预测为了类别1(判别面右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。
2.2 基于鸢尾花(iris)数据集的逻辑回归
在实践的最开始,我们首先需要导入一些基础的函数库,包括:
-
numpy(Python进行科学计算的基础软件包)
-
pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具)
-
matplotlib和seaborn绘图。
本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。
变量如下:
sepal length 花萼长度(cm)
sepal width 花萼宽度(cm)
petal length 花瓣长度(cm)
petal width 花瓣宽度(cm)
target 鸢尾的三个亚属类别,‘setosa’(0), ‘versicolor’(1), ‘virginica’(2)
2.2.1 库函数导入
## 基础函数库
import numpy as np
import pandas as pd
## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
2.2.2 数据读取、载入
利用Pandas把json文件转化为csv文件(解决了以前的一个问题):
##我们利用sklearn中自带的iris数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式
2.2.3 数据信息简单查看
##利用.info()查看数据的整体信息
iris_features.info()
##进行简单的数据查看,我们可以利用.head()头部.tail()尾部
iris_features.head()
iris_features.tail()
其对应的类别标签为,其中0,1,2分别代表’setosa’,‘versicolor’,'virginica’三种不同花的类别,共有150个数据。
iris_target
##利用value_counts函数查看每个类别数量
pd.Series(iris_target).value_counts()