opencv图像操作——凸包

本文介绍了使用OpenCV进行图像处理中的凸包检测,主要采用Graham扫描法。首先将图像转换为灰度和二值图像,接着寻找轮廓并提取候选点,再通过调用OpenCV的凸包API来获取最小外接凸多边形,最后展示结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念:在一个多边形边缘或者内部任意两个点的连线都包含在多边形边界或者内部。(最小外接多边形)。
检测算法:Graham扫描法
正式定义:包含集合S中所有点的最小凸多边形称为凸包。

Graham扫描法:
首先选择Y方向最低的点作为起始点p0,从p0开始极坐标扫描,依次添加p1...pn(排序顺序是根据极坐标的角度的大小,逆时针方向)
对每个点pi来说,如果添加pi点到凸包中导致一个左转向(逆时针方法)则添加该点到凸包,反之如果导致一个右转向(顺时针方向)删除该点从凸包中

流程:
首先把图像从RGB转为灰度
然后在转为二值图像
再通过发现轮廓得到候选点
凸包api调用
绘制显示

#include<opencv2/opencv.hpp>
#include<iostream>

using namespace std;
using namespace cv;

int threshold_value = 100;
int threshold_max = 255;
Mat src, dst, gray_src;
const char* output_image = "convex hull demo";
void Threshold_Callback(int, void*);
RNG rng(12345);

int main(int argc, char** argv) {

	src = imread("plane.jpg");     
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	c
### OpenCV凸包函数的使用教程 #### 1. 凸包的概念 在计算机视觉领域,凸包是指包围一组点的最小凸多边形。通过计算图像中的轮廓并提取其凸包,可以用于形状分析、手势识别等领域。 #### 2. `cv::convexHull` 的基本用法 OpenCV 提供了一个名为 `cv::convexHull` 的函数来计算给定点集的凸包[^1]。该函数的主要参数包括输入点集合以及返回的结果形式(索引还是实际坐标)。以下是具体说明: - **输入**: 输入是一个二维点数组或向量。 - **输出**: 输出可以是点的实际坐标或者它们对应的索引位置。 - **可选标志**: 如果设置为 `True`,则返回的是点的索引;如果为 `False`,则直接返回点本身。 ```python import numpy as np import cv2 # 创建一些随机点作为示例数据 points = np.array([[0, 0], [1, 0], [1, 1], [0, 1]], dtype=np.int32) # 计算这些点的凸包 hull_indices = cv2.convexHull(points, returnPoints=False) # 返回索引 print("Convex Hull Indices:", hull_indices.flatten()) hull_points = cv2.convexHull(points, returnPoints=True) # 返回实际点 print("Convex Hull Points:", hull_points) ``` 上述代码展示了如何利用 `cv::convexHull` 来获取点集的凸包信息[^4]。 #### 3. 凸缺陷的应用 除了简单的凸包外,还可以进一步研究凸缺陷——即凸包与原始轮廓之间的差异区域。这通常由另一个函数 `cv2.convexityDefects()` 实现[^2]。此方法接受两个主要参数:一个是目标轮廓,另一个是由 `cv::convexHull` 得到的凸壳结构。 下面是一段完整的例子展示如何检测手部图像的手指数量,其中涉及到了凸包及其缺陷的联合应用[^3]: ```python import cv2 import numpy as np # 假设已经有一个二值化后的黑白图 img_binary 和找到的一个最大连通域 cnt (contour) img_binary = ... # 加载你的二值图片 cnt = ... # 获取凸包 hull = cv2.convexHull(cnt, returnPoints=False) # 寻找凸缺陷 defects = cv2.convexityDefects(cnt, hull) if defects is not None: for i in range(defects.shape[0]): s, e, f, d = defects[i][0] start = tuple(cnt[s][0]) end = tuple(cnt[e][0]) farthest_point = tuple(cnt[f][0]) # 绘制线条连接起点终点,并标记最远点 cv2.line(img_binary, start, end, [0, 255, 0], 2) cv2.circle(img_binary, farthest_point, 5, [0, 0, 255], -1) # 显示最终结果 cv2.imshow('Result', img_binary) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段脚本不仅演示了如何调用相关 API 进行处理,还提供了可视化手段帮助理解整个流程的工作机制。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lc_MVP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值