COCO数据集解析-津南数字制造算法挑战赛

Object Instance 类型的标注格式
1,整体JSON文件格式

比如上图中的instances_train2017.json、instances_val2017.json这两个文件就是这种格式。

Object Instance这种格式的文件从头至尾按照顺序分为以下段落:

{
“info”: info,
“licenses”: [license],
“images”: [image],
“annotations”: [annotation],
“categories”: [category]
}
是的,你打开这两个文件,虽然内容很多,但从文件开始到结尾按照顺序就是这5段。其中,info、licenses、images这三个结构体/类型 在上一节中已经说了,在不同的JSON文件中这三个类型是一样的,定义是共享的。不共享的是annotation和category这两种结构体,他们在不同类型的JSON文件中是不一样的。

images数组元素的数量等同于划入训练集(或者测试集)的图片的数量;(24张-津南数字制造算法挑战赛\jinnan2_sample\初赛样例):
“file_name”: “190109_183147_00154261.jpg”, “flickr_url”: “”, “id”: 24, “height”: 250, “width”: 507, “license”: 1}], “annotations”:

annotations数组元素的数量等同于训练集(或者测试集)中bounding box的数量;(每张影像上的矩形框数量,190127_101614_00177263.jpg–image_id:0上为7个):
“annotations”: [{“id”: 1, “image_id”: 0, “catigory_id”: 4, “iscrowd”: 0, “segmentation”: [], “area”: 0.0, “bbox”: [745.0, 145.0, 77.0, 68.0]}, {“id”: 2, “image_id”: 0, “catigory_id”: 5, “iscrowd”: 0, “segmentation”: [], “area”: 0.0, “bbox”: [221.0, 213.0, 155.0, 76.0]}, {“id”: 3, “image_id”: 0, “catigory_id”: 5, “iscrowd”: 0, “segmentation”: [], “area”: 0.0, “bbox”: [470.0, 254.0, 59.0, 124.0]}, {“id”: 4, “image_id”: 0, “catigory_id”: 2, “iscrowd”: 0, “segmentation”: [], “area”: 0.0, “bbox”: [382.0, 395.0, 42.0, 38.0]}, {“id”: 5, “image_id”: 0, “catigory_id”: 2, “iscrowd”: 0, “segmentation”: [], “area”: 0.0, “bbox”: [405.0, 406.0, 45.0, 32.0]}, {“id”: 6, “image_id”: 0, “catigory_id”: 2, “iscrowd”: 0, “segmentation”: [], “area”: 0.0, “bbox”: [919.0, 141.0, 54.0, 35.0]}, {“id”: 7, “image_id”: 0, “catigory_id”: 3, “iscrowd”: 0, “segmentation”: [], “area”: 0.0, “bbox”: [803.0, 199.0, 159.0, 62.0]},

categories数组元素的数量为5(5类违禁品);
“categories”: [{“id”: 1, “name”: “\u94c1\u58f3\u6253\u706b\u673a”, “supercategory”: “restricted_obj”}, {“id”: 2, “name”: “\u9ed1\u9489\u6253\u706b\u673a”, “supercategory”: “restricted_obj”}, {“id”: 3, “name”: “\u5200\u5177”, “supercategory”: “restricted_obj”}, {“id”: 4, “name”: “\u7535\u6e90\u548c\u7535\u6c60”, “supercategory”: “restricted_obj”}, {“id”: 5, “name”: “\u526a\u5200”, "

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值