什么是影响日活/月活的因素?先天决定论vs.后天培养论

本文探讨了如何判断产品是否与市场匹配,分析了产品类别对其指标(如日活跃用户数、留存率)的影响。指出不同类别的产品(如聊天工具、税务软件)因其固有特性,无法通过简单的比较来衡量其市场表现,强调了理解产品本质的重要性。通过实例分析和图表展示,阐述了如何通过产品执行来最大化指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

意想不到的是,要想判断你的产品是否做到了与市场匹配是一件很困难的事情,主要原因之一就是要想得到有可比性的数字非常困难,甚至可遇而不可求。你不得不去比较类别相近或相同的产品来看一看,然而有时,这些比较难以开展。

先天决定论VS后天培养论
考虑这个问题的一种思路,产品具备某种先天或后天的要素,决定了它们的指标。有些产品类别,比如聊天或电子邮件,生来属于高频使用产品。你老是会用它们。而其他一些产品,比如税务软件,可能会给你带来价值,但你每年才只使用它一次。有许多电商产品在两者之间,你可能会每两周购买一次日用品,而不是每天购买。如果只是因为人们每年只使用你的产品一次,并不意味着你的产品与市场不匹配,因为你做的是一款税务产品,而不是聊天工具。

这里有一篇很棒的文章,对一大堆手机应用类别的留存&使用频率进行了分解:http://blog.flurry.com/bid/26376/Mobile-Apps-Models-Money-and-Loyalty

这里面的两个极端非常有趣:

  • 医药类应用:它们可能具有高留存率,因为如果你患有慢性疾病,你就可能持续地使用某款与你的情况相关的应用,但可能不会每天都用。
  • 图书/游戏:你可能会不停地读上几天、甚至一两周,一旦读完其中的内容,你就再也不会回来。

我注意到的一点是:特定的产品类别本质,决定了产品的日活/月活、+1天留存和+1周留存指标的自然范围。这是产品类别的“先天”部分。无论税务软件做的多么好,你也做不到让人们每天都来使用。

不过,通过你的产品执行,你能够使指标在自然范围内达到最大。一款真心不错的新闻类产品,比如Flipboard,能够将日活/月活提升50%以上,这是极好哒。

有些产品类别无法获得高日活/月活
对此的一个关键性结论是:除非你的产品与Twitter或Facebook属于相同类别,否则试图与它们的日活/月活的50%进行比较是毫无意义的。许多社交类游戏以Facebook日活/月活的30%为目标,但我们从Flurry的图表中也可以看到,社交类游戏也在日活/月活最高的产品类别之列。

也就是说,如果属于相同的类别,那么这些竞争对手的产品才能真正让你辨别出你的产品指标多好才是真的好,并且还要在你正确执行它们的前提下。

总之,别和你的产品的本质过不去:)

更新:来自Flurry的新图表:
在本文写完之后不就,Flurry发不了一张新版本的图表,就在下面。原文点这里。有意思的是,你可以看看哪些类别发生了一点点变化,我猜这些变化是因为每一类产品中新应用的数量发生了不少变化。

 

QuadrantChart_EngagementRetentionStats_ByCategory-resized-600_0


一、课程简介随着技术的飞速发展,经过多年的数据积累,各互联网公司已保存了海量的原始数据各种业务数据,所以数据仓库技术是各大公司目前都需要着重发展投入的技术领域。数据仓库是面向分析的集成化数据环境,为企业所有决策制定过程,提供系统数据支持的战略集合。通过对数据仓库中数据的分析,可以帮助企业改进业务流程、控制成本、提高产品质量等。二、课程内容本次精心打造的数仓项目的课程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。三、课程目标本课程以国内电商巨头实际业务应用场景为依托,对电商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每、周、跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3周跃用户统计,最近7天内连续3天跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统全面的掌握各项数仓项目技术,轻松应对各种数仓难题。四、课程亮点本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值