kafka提交偏移量失败导致重复消费

本文探讨了Spring Kafka中遇到的消费者组异常,焦点在于`CommitFailedException`,并介绍了如何通过调整`max.poll.interval.ms`解决消费者被踢出组的问题。作者分享了配置超时时间和背景心跳机制对避免重复数据的重要性,以及在YML配置中的实践方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题详情:

org.springframework.kafka.KafkaException: Seek to current after exception; nested exception is org.apache.kafka.clients.consumer.CommitFailedException: Offset commit cannot be completed since the consumer is not part of an active group for auto partition assignment; it is likely that the consumer was kicked out of the group.
	at org.springframework.kafka.listener.SeekToCurrentBatchErrorHandler.handle(SeekToCurrentBatchErrorHandler.java:92)
	at org.springframework.kafka.listener.RecoveringBatchErrorHandler.handle(RecoveringBatchErrorHandler.java:124)
	at org.springframework.kafka.listener.KafkaMessageListenerContainer$ListenerConsumer.handleConsumerException(KafkaMessageListenerContainer.java:1365)
	at org.springframework.kafka.listener.KafkaMessageListenerContainer$ListenerConsumer.run(KafkaMessageListenerContainer.java:1063)
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
	at java.util.concurrent.FutureTask.run(FutureTask.java:266)
	at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.kafka.clients.consumer.CommitFailedException: Offset commit cannot be completed since the consumer is not part of an active group for auto partition assignment; it is likely that the consumer was kicked out of the group.
	at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator.sendOffsetCommitRequest(ConsumerCoordinator.java:1116)
	at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator.commitOffsetsSync(ConsumerCoordinator.java:983)
	at org.apache.kafka.clients.consumer.KafkaConsumer.commitSync(KafkaConsumer.java:1510)
	at org.springframework.kafka.listener.KafkaMessageListenerContainer$ListenerConsumer.doCommitSync(KafkaMessageListenerContainer.java:2311)
	at org.springframework.kafka.listener.KafkaMessageListenerContainer$ListenerConsumer.commitSync(KafkaMessageListenerContainer.java:2306)
	at org.springframework.kafka.listener.KafkaMessageListenerContainer$ListenerConsumer.commitIfNecessary(KafkaMessageListenerContainer.java:2292)
	at org.springframework.kafka.listener.KafkaMessageListenerContainer$ListenerConsumer.processCommits(KafkaMessageListenerContainer.java:2106)
	at org.springframework.kafka.listener.KafkaMessageListenerContainer$ListenerConsumer.pollAndInvoke(KafkaMessageListenerContainer.java:1097)
	at org.springframework.kafka.listener.KafkaMessageListenerContainer$ListenerConsumer.run(KafkaMessageListenerContainer.java:1031)
	... 3 common frames omitted

解决思路:

kafka的好多配置,在spring-kafka中没有明确的配置对应,但是预留了一个properties属性,可以设置所有的kafka配置

spring.kafka.properties.session.timeout.ms=10000  // 单位:毫秒

spring.kafka.properties.max.poll.interval.ms=300000 // 单位:毫秒

kafka会有一个心跳线程来同步服务端,告诉服务端自己是正常可用的,默认是3秒发送一次心跳,超过session.timeout.ms(默认10秒)服务端没有收到心跳就会认为当前消费者失效。max.poll.interval.ms决定了获取消息后提交偏移量的最大时间,超过设定的时间(默认5分钟),服务端也会认为该消费者失效。

Kafka配置max.poll.interval.ms参数

max.poll.interval.ms默认值是5分钟,如果需要加大时长就需要给这个参数重新赋值

这里解释下自己为什么要修改这个参数:因为第一次接收kafka数据,需要加载一堆基础数据,大概执行时间要8分钟,而5分钟后,kafka认为我没消费,又重新发送,导致我这边收到许多重复数据,所以我需要调大这个值,避免接收重复数据
大部分文章都是如下配置:

public static KafkaConsumer<String, String> createConsumer() {
    Properties properties = new Properties();
    properties.put(CommonClientConfigs.BOOTSTRAP_SERVERS_CONFIG, BOOTSTRAP_SERVER);
    properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
    properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
    properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group1");
    properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
    properties.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 10000);
    return new KafkaConsumer<>(properties);
}

或是:

max.poll.interval.ms = 300000

如果需要在yml文件中配置,应该怎么写呢?

spring:
  kafka:
    consumer:
      max-poll-records: 500
  	properties:
      max.poll.interval.ms: 600000
<think>好的,我现在需要回答关于Spring Boot集成Kafka并手动提交偏移量的问题。首先,我应该回忆一下Kafka在Spring Boot中的基本配置,特别是关于消费者方面的配置。手动提交偏移量通常涉及到消费者的配置参数,比如enable.auto.commit设置为false,然后使用不同的提交方式,如同步或异步提交。 接下来,我需要考虑如何具体在代码中实现手动提交。可能涉及到使用AckMode.MANUAL或MANUAL_IMMEDIATE,以及在监听器方法中调用Acknowledgment参数的acknowledge()方法。同时,可能需要配置KafkaListenerContainerFactory,设置正确的AckMode。 然后,我需要给出一个示例代码,展示配置类和消费者监听器的写法。这里要注意消费者的工厂配置,尤其是容器工厂的属性设置,比如setAckMode。同时,监听器类需要使用@KafkaListener注解,并注入Acknowledgment参数来手动提交偏移量。 还需要解释为什么需要手动提交偏移量,比如为了更精确地控制消息处理后的提交,避免自动提交可能带来的重复消费或消息丢失的问题。例如,当消息处理完成后,手动提交可以确保只有处理成功的消息才会提交偏移量,增强应用的可靠性。 最后,思考用户可能的后续问题,比如如何保证消息不丢失、如何处理提交失败、如何实现批量提交,或者如何结合Spring Boot的其他特性来管理Kafka消费者。这些问题可以作为相关问题列出,帮助用户进一步深入学习。</think><< 在Spring Boot中集成Kafka并实现手动提交偏移量,需要通过配置消费者工厂和监听容器来实现。以下是具体实现步骤和代码示例: **1. 添加依赖** ```java // pom.xml <dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> <version>2.8.2</version> </dependency> ``` **2. 配置消费者工厂** ```java @Configuration @EnableKafka public class KafkaConfig { @Bean public ConsumerFactory<String, String> consumerFactory() { Map<String, Object> props = new HashMap<>(); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); props.put(ConsumerConfig.GROUP_ID_CONFIG, "manual-group"); props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false); // 关闭自动提交 return new DefaultKafkaConsumerFactory<>(props); } @Bean public ConcurrentKafkaListenerContainerFactory<String, String> manualKafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.getContainerProperties().setAckMode(ContainerProperties.AckMode.MANUAL_IMMEDIATE); // 手动立即提交模式 return factory; } } ``` **3. 消息监听器实现** ```java @Component public class ManualCommitListener { @KafkaListener(topics = "test-topic", containerFactory = "manualKafkaListenerContainerFactory") public void listen(ConsumerRecord<String, String> record, Acknowledgment acknowledgment) { try { // 处理消息逻辑 System.out.println("Received message: " + record.value()); // 处理完成后手动提交偏移量 acknowledgment.acknowledge(); } catch (Exception e) { // 处理异常情况(可记录错误日志或进行重试) System.err.println("Message processing failed: " + e.getMessage()); } } } ``` **实现原理说明:** 1. **关闭自动提交**:通过设置`enable.auto.commit=false`禁用Kafka客户端的自动提交机制 2. **ACK模式选择**: - MANUAL:批量提交偏移量(需要调用acknowledge()) - MANUAL_IMMEDIATE:立即提交单个偏移量 3. **消息确认**:在消息处理完成后通过调用`Acknowledgment.acknowledge()`方法提交偏移量 **注意事项:** 1. 必须确保消息处理完成后再提交偏移量,否则可能导致消息丢失 2. 需要处理消费异常情况,避免无限阻塞 3. 建议配合`@Retryable`注解实现重试机制 4. 提交失败时需要考虑补偿机制
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值