SUSAS(Stanford University Segmentation of Ultrasound Anatomy Structures)数据集是一个专注于超声图像中解剖结构分割的数据集。该数据集由斯坦福大学的研究人员创建,旨在推进超声图像中自动和半自动解剖结构分割算法的发展。
超声成像是一种广泛应用于医疗诊断中的非侵入性成像技术,它使用高频声波来生成人体内部结构的图像。然而,由于超声图像的噪声、伪影、低对比度以及操作者依赖等因素,从超声图像中准确分割出解剖结构是一个具有挑战性的任务。
SUSAS数据集通常包含一系列带有标签的超声图像,这些标签通常由医学专家手动绘制,以指示图像中不同解剖结构的边界。这些数据集通常用于训练和评估基于深度学习和计算机视觉技术的自动分割算法。
在SUSAS数据集中,可能包含的解剖结构类型取决于具体的超声成像部位和应用场景。例如,对于胎儿超声成像,数据集可能包含胎儿头部、心脏、腹部等部位的图像,并带有相应的解剖结构标签。对于其他类型的超声成像,如乳腺、甲状腺或腹部器官成像,数据集将包含相应部位的图像和标签。
通过利用SUSAS数据集,研究人员可以开发更加准确和鲁棒的自动分割算法,从而帮助医生更快速、更准确地诊断疾病。此外,这些数据集还可以用于探索新的图像处理技术和算法,以进一步提高超声图像的质量和分辨率。
获取方法:
方法1:注册LDC账号并加入组织获取数据,官网链接:LDC官网
方法2:关注公众号,回复SUSASLDC语料小助手https://mp.weixin.qq.com/s/8GgZFh9XAr7FYwivQ_ajRg