【AI】【MCP】搭建私人王炸MCP自动化工作流

目录

一、什么是MCP 

二、MCP大集合

 三、准备工作

3.1 安装node.js

3.2 安装vscode

3.3 安装cline插件

3.3.1 安装

 3.3.2 配置Cline

四、配置MCP服务

 4.1 Search-mcp服务

4.2 playwright-mcp 服务


前言:梦想组合,轻松办公,告别手动,AI编码超神!

一、什么是MCP 

        MCP 全称为 Model Context Protocol(模型上下文协议),是 Anthropic 公司在 2024 年 11 月推出的一种开放协议,旨在统一规范大型语言模型(LLM)与外部数据源和工具之间的通信。

MCP工作原理:

MCP与Function Call区别 :

二、MCP大集合

https://github.com/punkpeye/awesome-mcp-servers

这是最出色的mcp服务大集合

可按照说明书上的服务器去搭建自己的MCP服务

 三、准备工作

3.1 安装node.js

https://nodejs.org/zh-cn

网址如下 

3.2 安装vscode

https://vscode.github.net.cn/

3.3 安装cline插件

3.3.1 安装

在vscode插件搜索Cline,安装

 3.3.2 配置Cline

配置cline,选择openRouter 或deepseek(需收费)

# openRouter 需要去注册获取KEY:
https://openrouter.ai/settings/keys

# deepseek 需要注册获取KEY:
https://platform.deepseek.com/api_keys

我使用openRouter

openRouter 的Key获取方式(我使用github帐号登录的)

点击Create即可

四、配置MCP服务

 4.1 Search-mcp服务

选择下图

将search 配置到cline当中

初始化显示下图:

先执行pip命令注意python版本需要大于3.10,我使用3.10.11

pip install mcp-server-fetch

上面安装完成修改这个配置文件 

{
  "mcpServers": {
    "fetch": {
      "command": "python",
      "args": ["-m", "mcp_server_fetch"]
    }
  }
}

4.2 playwright-mcp 服务

先安装(这个不确定啊,理论上这是多余)

npm install -g @executeautomation/playwright-mcp-server

官方是:

https://github.com/executeautomation/mcp-playwright
{
  "mcpServers": {
    "playwright": {
      "command": "npx",
      "args": ["-y", "@executeautomation/playwright-mcp-server"]
    }
  }
}

报错:spawn npx ENOENT spawn npx ENOENT

改成

{
  "mcpServers": {
    "playwright": {
      "command": "cmd",
      "args": ["/c", "npx", "-y", "@executeautomation/playwright-mcp-server"]
    }
  }
}

成功 

使用时勾上

### 如何在 MCP 环境下搭建 Spring AI 项目 #### 客户端集成 为了使基于 Spring AI 开发的智能体能够快速接入 MCP 生态中的各种服务器服务,开发者可以通过以下方式实现客户端集成。Spring AI 提供了一套工具链来简化这一过程,允许开发者轻松定义和管理与 MCP Server 的交互逻辑[^1]。 以下是客户端集成的一个基本代码示例: ```java @Configuration public class McpClientConfig { @Bean public RestTemplate restTemplate() { return new RestTemplate(); } @Bean public McpClient mcpClient(RestTemplate restTemplate) { String mcpServerUrl = "http://mcp-server-url"; return new McpClient(restTemplate, mcpServerUrl); } } ``` 在此基础上,还需要确保项目的依赖项已正确引入,例如 `spring-boot-starter-web` 和其他必要的库文件。 --- #### 服务端迁移 对于现有的 Java 应用程序(如由 Spring Boot、Spring Cloud 或 Dubbo 构建的应用),可以将其迁移到 MCP Server 中运行。这通常涉及以下几个方面的调整: 1. **适配协议支持** 修改应用程序以支持 MCP 协议栈所需的通信模式。此部分可能需要重新设计某些接口层的功能,使其兼容 MCP 的数据传输标准。 2. **性能优化** 在将传统单体或微服务应用转换为 MCP Server 后,应特别关注系统的吞吐量和延迟表现。建议采用异步处理机制以及缓存策略来提升整体效率。 3. **监控与日志增强** 借助 Spring Actuator 插件或其他类似的运维组件,加强针对 MCP 场景下的健康检查能力及错误追踪功能。 下面是一段关于如何改造现有 RESTful API 成为 MCP 兼容版本的例子: ```java @RestController @RequestMapping("/api/mcp") public class McpController { private final SomeService someService; public McpController(SomeService someService) { this.someService = someService; } @PostMapping("/process") public ResponseEntity<McpResponse> processRequest(@RequestBody McpData data) { try { McpResult result = someService.handle(data); return ResponseEntity.ok(new McpResponse(result)); } catch (Exception e) { log.error("Error processing request", e); return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).build(); } } } ``` --- #### 使用 Ollama SDK 进行扩展 如果计划利用 Ollama 平台提供的 AI 功能,则需要注意其 SDK 及 API 版本的变化情况,并遵循官方指南完成对接工作[^2]。此外,还需评估模型推理请求的数量级及其潜在费用影响,从而制定合理的限流措施或者批量操作方案。 --- #### 总结 综上所述,在 MCP 环境中部署 Spring AI 项目不仅涉及到技术选型上的考量,还包含了对既有业务流程重构的要求。通过上述方法论指导实践,可有效促进两者之间的深度融合与发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

春天的菠菜

一毛两毛也是动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值