0013-图像的阈值化-OTSU、固定阈值法、基于局部的阈值化

本文介绍了图像处理中的阈值化方法,包括OTSU阈值化、固定阈值法和基于局部的阈值化。通过OpenCV库,详细讲解了每种方法的原理和应用,提供代码示例及运行结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在图像处理中,我们通常会把图像先进行简化处理。其中图像的灰度化和图像的阈值化是最常用的两种简化处理方法。
图像的灰度化处理就是把图像从三维彩色空间降到一维的灰度空间,在OpenCV中实现起来很简单,用函数cvtColor就能实现。
图像的阈值化处理是在灰度图像的基础上,把灰度图像进一步简化为二值图像,即整幅图像的各点像素值只用两个数值来表示,其中一个数值为零,另一个数值为非零值。
图像的阈值化的关键是找到一个最佳阈值,使得在进行图像简化操作是尽量多的过滤掉我们不需要的信息并保留我们需要的信息。

本文介绍三种基于OpenCV的阈值化处理方法

第一种 OTSU阈值化(最大类间方差算法)
这种方法详见我的博文:https://blog.csdn.net/wenhao_ir/article/details/51179117

第二种 固定阈值法
固定阈值法的阈值是固定的,即不用使用相关算法去计算这个阈值,而是由程序或用户设定。
我们在图像窗口中创建一个滑动条,通过滑动条去查看不同的阈值对应的阈值化后的图像。
源码如下

源码中使用的图像下载链接:http://pan.baidu.com/s/1kUJMx1t 密码:r3d3
//opencv版本:OpenCV3.0
//VS版本:VS2013
//Author:qxsf321.net

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值