第九章 Python计算生态概览
9.1从数据处理到人工智能
9.2实例15霍兰德人格分析雷达图
9.3从web分析到网络空间
9.4从人机交互到艺术设计
9.5实例16:玫瑰花绘制
方法论
-概览Python计算生态,看见更大的世界
实践能力
-初步编写带有计算生态的复杂程序
9.1从数据处理到人工智能
- 9.1.1 Python库之数据处理
- 9.1.2 Python库之数据可视化
- 9.1.3 Python库之文本处理
- 9.1.4 Python库之机器学习
数据表示->数据清洗->数据统计->数据可视化->数据挖掘->人工智能
- 数据表示:采用合适方式使用程序表达数据
- 数据清洗:数据归一化、数据转化、异常值处理
- 数据统计:数据的该要理解,数量、分布、中位数等
- 数据可视化:直观展示数据内涵的方式
- 数据挖掘:从数据分析获得只是、产生数据外的价值
- 人工智能:数据/语言/图像视觉等方面深度分析与决策
9.1.1 Python库之数据处理
Numpy:表达N维数组的最基础库
特点
- Python 接口使用,C语言实现,计算速度优异
- Python数据分析及科学计算的基础库,支撑Pandas等
- 提供直接的矩阵算法、广播函数、线性代数等功能
Pandas:Python数据分析高层次应用库 - 提供了简单易用的数据结构和数据分析工具
- 理解数据类型与索引的关系,操作索引即操作数据
- Python最主要的数据分析功能库,基于Numpy开发
特点
Pandas数据提供2个核心数据结构
- Series=索引+一维数据
- DataFrame=行列索引+二维数据
也提供了一个数学、科学和工程计算功能库
SciPy:数学、科学和工程计算功能库
- 提供了一批数学算法及工程数据运算功能
- 类似Matlab,可用于傅里叶变换、信号处理等应用
- Python最主要的科学计算功能库,基于Numpy开发
9.1.2 Python库之数据可视化
Matplotlib:高质量的二维数据可视化功能库
- 提供了超过100种数据可视化展示效果
- 提供maltplotlib.pyplot子库调用各可视化效果
- Python最主要的数据可视化功能库,基于Numpy开发
Seaborn:统计类数据可视化功能库
- 提供了一批高层次的统计类数据可视化展示效果
- 主要展示数据间的分布、分类和线性关系等内容
- 基于Matplotlib开发,支持Numpy和Pandas
Mayavi:三维科学数据可视化功能库
-
提供了一批简单易用的3D科学数据可视化展示效果
-
目前版本时Mayavi2、三维可视化最主要的第三方库
-
支持Numpy、TVTK、Traits、Envisage
9.1.3 Python库之文本处理
PyPDF2:用来处理PDF文件的工具集
http://mstamy2.github.io/PyPDF2 -
提供了一批处理PDF文件的计算共功能
-
支持获取信息、分割/整合文件、加密解密等
-
完全Python语言实现,不需要额外依赖,功能稳定
from PyPDF2 import PdfFileReader, PdfFileMerger
merger = PdfFileMerger()
input1 = open("document1.pdf", "rb")
input2 = open("document2.pdf", "rb")
merger.append(fileobj = input1, pages = (0,3))
merger.merge(position = 2, fileobj = input2, pages = (0,1))
output = open("document-output.pdf", "wb")
merger.write(output)
NLTK:自然语言文本处理第三方库
- 提供了一批简单易用的自然语言文本处理功能
- 支持语言文本分类、标记、语法句意、语义分析等
- 最优秀的Python自然语言处理库
Python-docx:创建或更新Microsoft Word 文件的第三方库
- 提供创建或更新doc,docx等文件的计算功能
- 增加并配置段落、图片、表格、文字、功能全面
from docx import Docum