celery实现分布式

worker运行在不同的机器上,每台机器上有多个task进程;

worker运行的时候连接到broker,在控制机器上(任务发布节点)直接向broker发送任务,只要建立一个broker,在不同的机器上运行celery worker。

 
框架图:

task.py:

# -*- coding: utf-8 -*-
from celery import Celery
from celery.schedules import timedelta
from celery.task import periodic_task

class Config:
    BROKER_URL = 'redis://10.21.144.110:6379/5'
    CELERY_RESULT_BACKEND = 'redis://10.21.144.110:6379/6'
    CELERY_TIMEZONE = 'Asia/Shanghai'

app = Celery('celery-tasks')
app.config_from_object(Config)

@app.task(queue='for_task_collect') #第一个队列
def println():
    print("thanks for god")
    return 'success'

@app.task(queue='for_task_add') #第二个队列
def add(x, y):
    print("x + y = {}".format(x+y))
    return x+y

test.py文件(任务生产者):

 
# -*- coding: utf-8 -*-
from tasks import add, println
for i in range(500):
    println.delay()
    add.delay(2, 2)

 

 
1、若想多台机器共同使用其中一台机器上的Redis作为任务调度队列Broker,需要配置该机器上的redis文件,配置完成后 务必重启redis服务
2、将task.py与test.py放在Broker服务器(样例中是10.21.144.110)的同一目录下,同时将task.py文件放到另一台worker服务器上(10.21.144.111)
 
3、分别在两台服务器上启动worker:
celery worker -A tasks -l info -Q for_task_add #机器10.21.144.110接收队列for_task_add中的任务交给worker处理
celery worker -A tasks -l info -Q for_task_collect #机器10.21.144.111接收队列for_task_collect中的任务交给worker处理

4、测试:执行python test.py

机器10.21.144.110上的worker处理结果:
机器10.21.144.111上的worker处理结果:
 
从两张图中,可以清楚地看到机器10.21.144.110产生的任务根据队列被送往不同的机器上交给worker处理,实现了分布式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值