Matplotlib 强势变身:6 个 Python 风格库惊艳众人

本文介绍了如何利用Aquarel、RoséPine、Catppuccin、mplcyberpunk、matplotx和GruvBox等Python库为常规数据可视化增添新颖和潮流感,通过实例展示了如何使用这些库制作更具吸引力的图表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果你也是一名数据科学家,你一定明白,无论你对数据的理解和研究有多深入,你最终对结果的判断都将基于你可视化成果。更糟的是,对于随机观察者来说,这些图表不仅需要具有信息量和直观性,还要具有潮流感。

在我看来,python matplotlib和seaborn样式有些乏味,而且被过度使用。有时,它们甚至会让人觉得作者没有投入太多时间或精力。为了给绘图增添亮点,我发现了6个Python库,它们可以在常规的线图/散点图、直方图和其他基本可视化图上增加色彩。每个库都有对应的github repo链接! 

首先,生成一些综合数据。使用每个库制作4个子图,这样就可以在同类数据上对它们进行比较。

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns

'''Generating points to create a scatter plot'''
def scatter():
  x = np.random.random(100)
  y = x-np.random.random(100)
  z = np.random.randint(0,4,100)
  df = pd.DataFrame({'X':x, 'Y': y, 'Z':z})
  return df

'''Generating points to create a line plot'''
def line():
  x = np.arange(0,10,0.1)
  y_1 = np.sin(x)
  y_2 = np.sin(x+5)
  y_3 = np.sin(x+10)
  y_4 = np.sin(x+15)
  y_5 = np.sin(x+20)
  df = pd.DataFrame({'X':x,'y_1':y_1, 'y_2':y_2, 
                'y_3':y_3, 'y_4':y_4, 'y_5':y_5})
  return df

'''Sampling data from several distributions'''
def hist():
  x_1 = np.random.normal(1,0.1,1000)
  x_2 = np.random.gamma(1,0.25,1000)
  x_3 = np.random.normal(0.4, 0.1,1000)
  x_4 = np.random.normal(-0.1, 0.3,1000)
  df = pd.DataFrame({'X_1': x_1, 'X_2':x_2, 'X_3': x_3, 'X_4':x_4})
  return df

注意:没有特定的颜色或图案,只是在同一组绘画中应用一种风格。

1. Aquarel

Aquarel库[1]提供11 种不同的样式,包括深色和浅色样式,可使用pip 安装:

pip install aquarel

可以像下面这样使用上下文管理器来使用这些主题:

with load_theme("arctic_light"):

  fig, ax = plt.subplots(ncols=2, nrows=2, figsize=(16,9))
  df = scatter()
  f= ax[0,0].scatter(df.X,df.Y, c=df.Z, s=50)
  ax[0,0].set_xlabel('X data')
  ax[0,0].set_ylabel('Y data')
  handles, labels = f.legend_elements(prop="colors", alpha=0.6)
  legend2 = ax[0,0].legend(handles, labels, loc="lower right")

  df=line()
  df.plot(x='X', ax=ax[0,1])

  df=hist()
  sns.kdeplot(df, fill=True, ax=ax[1,0])
  ax[1,0].set_xlabel('Value')

  sns.kdeplot(df, x="X_1", y="X_2", fill=True, ax=ax[1,1])
  sns.kdeplot(df, x="X_3", y="X_4",fill=True, ax=ax[1,1])
  ax[1,1].set_xlabel('Dist 1')
  ax[1,1].set_ylabel('Dist 2')

  plt.suptitle('Aquarel\narctic_light', fontsize=24)
  plt.savefig('arctic_light.jpg')
  plt.show()

或者,你也可以直接使用

from aquarel import load_theme

theme = load_theme("arctic_light")
theme.apply()
# ... plotting code here
theme.apply_transforms()
441fe5d0700dc99bb17ba128c283b33d.jpeg 580c2b239d62ba5280e6c5fe87585a05.jpeg

2. Rosé Pine

第二个repo[2] 我非常喜欢,它不是一个库,而是一组主题,你需要下载这些主题,然后指定 matplotlib 的路径:

plt.style.use('./themes/rose-pine-moon.mplstyle')

之后,只需要按照相同的绘图步骤进行即可。这个软件包的颜色非常温和,同时对比度也很高。

2b339cf58edc63ba85d51740d7e33880.jpeg

3. Catppuccin

需要使用pip 安装Catppuccin库[3]。它包括 4 种不同的风格和不同的暗度。

matplotlib.style.use("mocha")
8974b60c4b0dfab73a15bafa54d6f16d.png Catppuccin软件包还提供了一个有趣的功能,可以将不同的样式表进行混合。可以尝试将基本的seaborn-v0_8-dark和mocha样式表结合起来。 047089be99a8b0199b4e5256607e6c22.png
Catppuccin混合主题

4. mplcyberpunk

下一个库mplcyberpunk[4]非常有名,每个人都钟爱赛博朋克,这款软件不仅能够提供恰到好处的颜色和背景,还能为图片添加发光效果,绝对让人惊艳!

76586c1081d08085005adff75a182820.png
import matplotlib.pyplot as plt
import mplcyberpunk
plt.style.use("cyberpunk")
...
mplcyberpunk.add_glow_effects()
plt.show()
206e28279234f2248c7cff7952ceba9e.png
fig, ax = plt.subplots()
...
mplcyberpunk.make_lines_glow(ax)
425e4aa3d9589fcb3fe9c323b7517a54.png

5. matplotx

matplotx[5]是matplotlib的另一个扩展包,可以通过pip像之前的扩展包一样安装。它提供了20种不同的主题,可用于科学研究、投影或其他任何用途,因为这些风格既有严谨的特点,也有非正式和时尚的风格。

0ca68aecfa839ab9f1c18edec2f699cd.png ab449e4c30870c929f71eac2be037c8f.png

6. GruvBox

今天的最后一个是GruvBox[6]。,它不是一个真正的库,而是一个文件,适用时需要上传它:

matplotlib.style.use("./gruvbox.mplstyle")
18f5c10f55f05ab82bd6ee07cc5913e9.png

尽管这个软件仓库中只有一个主题,但我非常喜欢它的字体、线条和背景颜色的搭配!

希望以上的内容能够帮助到你~

参考资料

[1]

Aquarel库: https://github.com/lgienapp/aquarel

[2]

repo: https://github.com/h4pZ/rose-pine-matplotlib

[3]

Catppuccin库: https://github.com/catppuccin/matplotlib

[4]

mplcyberpunk: https://github.com/dhaitz/mplcyberpunk

[5]

matplotx: https://github.com/nschloe/matplotx

[6]

GruvBox: https://github.com/thriveth/gruvbox-mpl/tree/master

087d8c04c619a47210ccda75030f1d79.gif

-------- End --------

推荐👇同名微信视频号

b60b3b3fcbbf250d778c74b795510bda.png

2ec1c6418f7c8160dd11496416600770.jpeg
图解Pandas

图文00-内容框架介绍 | 图文01-数据结构介绍 | 图文02-创建数据对象 | 图文03-操作Excel文件 | 图文04-常见的数据访问 | 图文05-常见的数据运算 |  图文06-常见的数学计算 | 图文07-常见的数据统计 | 图文08-常见的数据筛选 |  图文09-常见的缺失值处理 | 图文10-数据合并操作 | 图文11-Groupby分组操作

e5506671bb863fca15535600d4def984.jpeg d8f322a894231744b8b918518bda0904.jpeg
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值