第一阶段:奠定基础 (2017 - 2019)
这个阶段的核心是创建了革命性的基础架构,并确立了“预训练+微调”的范式。
-
2017: Transformer 架构
- 特性: 首次提出完全基于“自注意力机制 (Self-Attention)”的神经网络架构,摒弃了传统的循环(RNN)和卷积(CNN)结构。它能更好地处理长距离依赖关系,并且极大地提升了并行计算效率。
- 意义: Transformer是现代几乎所有大型语言模型的基石,其重要性无与伦比。
- 参考来源: 论文 Attention Is All You Need
-
2018: BERT (Bidirectional Encoder Representations from Transformers)
- 特性: 基于Transformer的双向编码器。通过“掩码语言模型 (Masked Language Model)”和“下一句预测 (Next Sentence Prediction)”任务进行预训练,让模型能深刻理解词语在上下文中的双向关系。
- 意义: 革命性地提升了各项自然语言理解(NLU)任务的基准,开启了大规模预训练模型的时代。
- 参考来源: 论文 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
-
2019: T5 (Text-to-Text Transfer Transformer)
- 特性: 提出一个统一的框架,将所有NLP任务(如翻译、摘要、问答)都转化为“文本到文本”的格式。模型输入是带有任务指令的文本,输出是结果文本。
- 意义: 极大地简化了模型的使用和微调流程,证明了单一模型处理多样化任务的可行性。
- 参考来源: 论文 Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
第二阶段:规模化与多模态探索 (2021 - 2022)
模型参数规模急剧增长,并开始从纯文本向对话、代码和多模态领域拓展。
-
2021: LaMDA (Language Model for Dialogue Applications)
- 特性: 专为对话应用设计的模型,经过大量对话数据微调。其训练目标是优化对话的合理性 (Sensibleness)、特异性 (Specificity) 和趣味性 (Interestingness)。
- 意义: 在生成流畅、自然、有逻辑的开放域对话方面取得了重大突破。它是早期Bard产品的技术基础。
- 参考来源: Google AI Blog: LaMDA: our breakthrough conversation technology
-
2022: PaLM (Pathways Language Model)
- 特性: 一个参数规模高达5400亿的密集型模型。它在Google的下一代AI架构Pathways上训练,展示了巨大规模带来的“涌现能力”,尤其是在多步推理和代码解释等复杂任务上。
- 意义: 证明了模型规模是提升复杂推理能力的关键因素之一。
- 参考来源: 论文 PaLM: Scaling Language Modeling with Pathways
-
2022: Imagen & MusicLM
- 特性:
- Imagen: 一个文本到图像的扩散模型,以生成图像的逼真度和对文本提示的深度理解而闻名。
- MusicLM: 一个文本到音乐的模型,能生成长达数分钟、高保真度且符合复杂描述(如“一段平静的、适合冥想的钢琴曲”)的音乐。
- 意义: 标志着Google在AIGC(人工智能生成内容)的多模态领域取得了顶尖成果。
- 参考来源: Imagen Website & MusicLM Website
- 特性:
第三阶段:全面竞争、产品化与开源 (2023 - 至今)
面对激烈的市场竞争,Google加速了模型的迭代、产品化(Bard/Gemini App)以及对开源社区的拥抱。
-
2023 (Feb): Bard 发布
- 特性: Google推出的对话式AI服务,最初基于LaMDA的轻量级版本,是其对标ChatGPT的直接产品。
- 意义: 标志着Google正式将大模型技术推向公众,参与生成式AI产品竞赛。
- 参考来源: Google Blog: An important next step on our AI journey
-
2023 (May): PaLM 2
- 特性: PaLM的继任者。虽然规模可能更小,但更高效,在多语言能力、推理和编码方面进行了重点优化。它成为了驱动Bard性能大幅提升的核心引擎。
- 意义: 体现了模型发展从“唯规模论”向“效率与能力并重”的转变。
- 参考来源: Google AI Blog: Announcing PaLM 2
-
2023 (Dec) - 至今: Gemini & Gemma 系列
- 这是Google当前的旗舰模型系列,下文将单独详细列出。
Gemini 和 Gemma 系列细分版本
Gemini 系列 (闭源旗舰模型)
Gemini是Google迄今为止最强大、最通用的模型,其核心特点是原生多模态,即从一开始就被设计为能够无缝地理解、操作和结合不同类型的信息。
版本 | 发布时间 | 主要特性 | 适用场景 |
---|---|---|---|
Gemini 1.0 Ultra | 2024年2月 (广泛可用) | - 最强性能: Google最顶级的模型,在MMLU等30多项基准测试中超越了当时所有模型。 - 原生多模态推理: 能够处理文本、图像、音频、视频和代码的复杂交错输入。 - 卓越的推理能力: 专为高度复杂的任务设计。 | 科学研究、企业级复杂数据分析、需要顶级智能的专业应用。通过付费的Gemini Advanced提供服务。 |
Gemini 1.0 Pro | 2023年12月 | - 平衡性能与效率: 性能强大的主力模型,针对广泛的任务进行了优化。 - 快速响应: 相比Ultra,延迟更低,成本更优。 - 多功能: 当前驱动Gemini(原Bard)和Google AI Studio免费版的核心。 | 日常对话、内容创作、代码生成、摘要分析等绝大多数通用场景。 |
Gemini 1.0 Nano | 2023年12月 | - 端侧高效模型: 尺寸最小,专为在移动设备上本地运行而设计。 - 离线运行和低延迟: 能够在无网络连接的情况下执行任务,如智能回复、文本摘要。 - 隐私保护: 数据在设备本地处理,不上传云端。 | Pixel 8 Pro等安卓设备的端侧AI功能。 |
Gemini 1.5 Pro | 2024年2月 | - 巨型上下文窗口: 具有开创性的100万Token上下文窗口,可以一次性处理整本书或数小时的视频。 - 混合专家架构(MoE): 训练和服务时更高效。 - 高级多模态推理: 能够对长视频或大型代码库进行细粒度的提问和分析。 | 处理海量文档(如财报、法律文件)、分析长视频内容、大型代码库审查等需要超长上下文的专业任务。 |
参考来源: Google’s Gemini Official Page & Gemini 1.5 Technical Report
Gemma 系列 (开源轻量级模型)
Gemma是基于与Gemini相同的研究和技术构建的、开放权重(open weights)的轻量级模型系列。
版本 | 发布时间 | 主要特性 | 适用场景 |
---|---|---|---|
Gemma 2B | 2024年2月 | - 轻量高效: 仅20亿参数,可以在CPU甚至移动设备上高效运行。 - 性能优越: 在同等规模的开源模型中,性能处于领先水平。 | 学术研究、个人开发者项目、资源受限的部署环境、端侧应用原型开发。 |
Gemma 7B | 2024年2月 | - 性能更强: 70亿参数,提供了更强的语言理解和生成能力,可在GPU上流畅运行。 - 平衡之选: 在性能和部署成本之间取得了很好的平衡。 | 需要更高质量响应的聊天机器人、内容生成工具、代码助手等,是目前最受欢迎的开源尺寸之一。 |
Instruct 版本 (Gemma 2B-it & 7B-it) | 2024年2月 | - 指令微调: 基础模型经过对话和指令数据的微调。 - 更擅长交互: 更适合用于构建聊天机器人或遵循用户指令的应用,表现更安全、更有用。 | 构建对话式AI、问答系统、个人助手等需要直接与用户交互的应用。 |
参考来源: Google’s Gemma Official Page & Google AI Blog: Gemma: Introducing new state-of-the-art open models
上面这张时间轴直观地展示了Google大模型战略的演进:
- 奠基阶段 (2017-2019): 通过 Transformer 和 BERT 奠定了技术和范式的基础。
- 探索阶段 (2021-2022): 向上探索模型规模的极限 (PaLM),向外拓展应用场景的边界(LaMDA 对话,Imagen 图像)。
- 竞争与落地阶段 (2023-至今): 这是战略最清晰、产品发布最密集的时期。
- 产品线: 以 Bard (后更名为Gemini) 为核心,快速迭代背后的引擎。
- 技术线: 发布王牌 Gemini 系列,以原生多模态应对竞争,并通过 1.5 Pro 的超长上下文展示技术实力。
- 生态线: 通过开源 Gemma 系列,积极构建开发者生态,形成闭源旗舰与开源社区双轮驱动的格局。