PCA降维实例

考虑一个例子,它使用了衡量美国329个城市生活质量的9个指标:气候、住房、健康、犯罪率、交通、教育、艺术、娱乐和经济。对于各指标,越高表示越好,如高的犯罪指标表示低的犯罪率。

先从cities.mat中加载数据

>> load cities

>> whos

Name Size Bytes Class Attributes

categories 9x14 252 char

names 329x43 28294 char

ratings 329x9 23688 double

cities.mat中包含了3个变量:

categories--一个包含各指标名字的字符串矩阵

names--一个包含329个城市名字的字符串矩阵

ratings--329行9列的数据矩阵

为快速对ratings数据有个直观的印象,可以使用盒图绘制出数据来

boxplot(ratings,'orientation','horizontal','labels',categories)

img

可以注意到大体上艺术和住房的指标要比犯罪和气候的指标有更大的变异性。

通常你会考虑绘制各对原始变量,但这将有36对变量图。而主成分分析或许会降低你需要考虑的变量个数。

有时对原始数据计算主成分是可以的,这在各变量是相同的单位时是很合适的。但是当变量单位不同或不同列数据的方差相差很大时,先对数据做标准化是更好的。

可以通过除以各列标准差来标准化数据,如下s

tdr = std(ratings);%求标准差

sr = ratings./repmat(stdr,329,1);

这样就为找主成分做好准备了。

[coefs,scores,variances,t2] = princomp(sr);

下面各部分解释了princomp函数的输出。

*Component Coeffcients*

coefs包含了产生主成分的原始变量线性组合的系数,它常被称为loadings。它是9X9的矩阵,前三个主成分的系数向量为 (原矩阵为3**29***9

>> c3 = coefs(:,1:3)

c3 =

0.2064 -0.2178 0.6900

0.3565 -0.2506 0.2082

0.4602 0.2995 0.0073

0.2813 -0.3553 -0.1851

0.3512 0.1796 -0.1464

0.2753 0.4834 -0.2297

0.4631 0.1948 0.0265

0.3279 -0.3845 0.0509

0.1354 -0.4713 -0.6073

可以看到在第一主成分中最大的系数是第三个和第七个,即健康和艺术。此主成分的所有系数都是正的。

主成分通常是单位长且正交的

I = c3'*c3

I =

1.0000 -0.0000 -0.0000

-0.0000 1.0000 -0.0000

-0.0000 -0.0000 1.0000

scores包含了原始数据在被主成分定义的新坐标系统中的坐标,它是和原始数据矩阵同大小的。

绘制scores的前两列可以展示原始数据投影到前两个主成分的新数据。**princomp函数计算的scores具有零均值。**

plot(scores(:,1),scores(:,2),'+')

xlabel('1st Principal Component')

ylabel('2nd Principal Component')

img

注意到上图中右边的离群点。函数gname可以用于标出这些离群点,调用gname时传入一个string矩阵,它包含了各点的标签,如下

gname(names)

移动鼠标在右半部分的点点击,当你点击各点的时候,在点上会标记names中对应的字符串,如下

从上面的标记,发现这些离散点是美国一些人口比较多的城市,它们明显与其他数据不同,所以它们可能需要被分离开。为移除这些数据,首先识别这些数据的行,方法如下

1.关闭上面的figure

2.重绘plot

plot(scores(:,1),scores(:,2),'+')

xlabel('1st Principal Component');

ylabel('2nd Principal Component');

3.运行gname函数,如输入参数

4.标记离散点,标记自动为这些数据的行数

img

然后创建一个包含这些点的变量

metro = [43 65 179 213 234 270 314];

names(metro,:)

ans =

Boston, MA

Chicago, IL

Los Angeles, Long Beach, CA

New York, NY

Philadelphia, PA-NJ

San Francisco, CA

Washington, DC-MD-VA

然后移除这些行

rsubset = ratings;

nsubset = names;

nsubset(metro,:) = [];

rsubset(metro,:) = [];

size(rsubset)

ans =

322 9

variances是一个包含了主成分方差的向量,scores的每一列的方差即为variances对应的项

variances(对应特征值)

variances =

3.4083

1.2140

1.1415

0.9209

0.7533

0.6306

0.4930

0.3180

0.1204

你可以很容易的计算所有差异性占到百分比

percent_explained = 100*variances/sum(variances)

或percent_explained = consum(variances)./sum(variances)%[累加]

percent_explained =

37.8699

13.4886

12.6831

10.2324

8.3698

7.0062

5.4783

3.5338

1.3378

使用pareto函数可以以图的方式显示此百分比

pareto(percent_explained) % 或 pareto(特征值向量)

xlabel('Principal Component')

ylabel('Variance Explained (%)')

img

(曲线为累加的贡献值)

显示的figure中可以看到第一主成分明显比第二主成分要高很多,但它只解释了不到40%的方差,所以需要使用更多的成分。可以看到前三个主成分解释了三分之二的方差,所以这三个成分可以作为一个理想的方式来降低维数。

t2是一个衡量各观测值离数据中心距离的统计量,这是一个找出数据中极值点的有效分析方法。

[st2, index] = sort(t2,'descend'); % Sort in descending order.,降序

extreme = index(1)

extreme =

213

names(extreme,:)

ans =

New York, NY

这个极值点是不奇怪的,因为Vew York的ratings是离美国城镇平均值是最远的。

*结果可视化*

使用biplot函数可以帮助我们可视化各变量的主成分的系数和各观察值的主成分scores。如下,

biplot(coefs(:,1:2), 'scores',scores(:,1:2),...

'varlabels',categories);

axis([-.26 1 -.51 .51]);

img

上图中,9个变量以向量的形式呈现出来,向量的方向和长度表示了各变量对两个主成分的贡献。例如,对于第一主成分,对所有9个变量的系数都是正值。对于第 二主成分,变量教育、健康、艺术和交通是正的贡献,其他5个是负的贡献。这表明此成分在不同城市间是有区别的:大的值的变量、小的值的变量和负值的变量。(联系上文,健康和艺术在第一主成分分量的最坐标最大)

上图中变量标签有时候会很拥挤,可以在绘图时在varlabels参数中忽略一些,或在figure的编辑模式下选中并移动它们。可以使用Tools下的Data Cursors功能查看图中的信息

img

biplot函数也可以用于绘制三维的信息

biplot(coefs(:,1:3), 'scores',scores(:,1:3),...

'obslabels',names);

axis([-.26 1 -.51 .51 -.61 .81]);

view([30 40]);

img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值