这段时间,很多做教育、咨询、门店、To B服务的朋友来问我一个问题:
“我也想搞个智能体,用AI来提效,但不知道从哪开始。”
我搭建过几十个智能体项目,结合社群讨论,慢慢摸出了一套从需求到落地的判断方法。今天分享给你,也许能有一点启发。
先想清楚:为什么要做这个智能体?
这一步很多人忽略了。不是看别人做了你就也得做,而是你要问自己一句:
👉这个智能体,是为了节省人力成本、提升效率,还是能提升转化率?
举个例子:
-
教培行业获客引流,天天回答家长“适合几岁孩子”“多少钱”“有试听吗”,这些完全可以交给一个智能体处理
一句话:要明确这个智能体在你的业务里,是干嘛的,有没有拿到结果。
推广智能体是一次重构 ,是有成本的。感兴趣的话,下次分享下我的智能体收益评估方法论,也就是ROI计算方法。
场景要拆小,一个体别干太多事
有些人做一个智能体,想让它既能答疑、又能推课、还能接单、写内容……结果啥都不太好用,不如直接用DeepSeek。
建议是:每个智能体,聚焦一个具体业务环节就行。
比如还是教培的例子,可以拆成:
-
售前助手 → 介绍课程、适合人群、优惠信息
-
在读服务 → 查询进度、提交作业、请假说明
-
售后支持 → 退费政策、发票开具、常见问题
每个智能体分工明确,才好用。
人设要立起来,语气口吻要对
现在做 AI,不光是功能上靠谱,还得让用户觉得“像在和一个真实人说话”,不能可能有负向。
怎么做到?
你得给这个 智能体 定个“人设”:
-
是不是“课程顾问”?
-
是不是“售后专员”?
还得定语气:
-
是不是亲切一点?
-
要不要用一些行业内术语?
-
回答长一点好,还是尽量简洁?
另外还要做好负向提示词设计,这些定好了,你的 智能体才能“像个人”一样去工作。
有些场景得用知识库,有些场景不用
知识库听起来高大上,但不是所有 智能体 都要加知识库。
什么时候要加?
-
如果你有很多固定的规则,比如退费、报名流程、操作步骤,这些最好整理成知识库。
-
如果你的产品手册、操作文档、政策说明太多,也适合整理成知识库,让智能体更专业。
但如果就是接个流程、收集个信息,没啥知识的,那就不用加,轻量就好。
用不用大模型,取决于任务类型
也不是每个 Agent 都需要大模型。
如果你希望 Agent 能:
-
理解模糊表达(“我想报个适合5岁孩子的课”)
-
自然聊天、不死板
-
帮你写文案、起标题
那你可能需要用 GPT、Claude 之类的大模型。
但如果就是选项式流程、表单收集、按钮导航,普通规则引擎就够用。
省模型调用,也省钱。
是否支持多轮对话、批量使用
有些智能体是一次性对话结束,有些场景需要多轮逻辑。
比如:
-
引导用户留下电话 + 获取需求 + 推荐产品 → 多轮流程
-
用户上传资料后分发给不同员工 → 多流程联动
-
同一个智能体要支持多个分店 → 需要支持多账号/批量管理
建议一开始就考虑清楚结构,否则做完再改会很麻烦。
评估智能体落地价值
一个 Agent 值不值得做,还得回头看看它的“产出”。
能不能:
-
节省几个小时客服时间?
-
降低人工培训成本?
-
提高成交率、报名转化?
如果能,就值得做。
如果做一个体要你花好几天,但只能应对很小一撮人,还不能复用,那就不划算。
最后说句实话
现在大家对智能体还很新鲜,但不久之后,能留下来的,都是那些真正在业务里好用、能解决问题的应用。