Python基础知识复习I

本文详细介绍了如何使用Python的pandas库来导入不同类型的文件数据,包括txt、csv、xlsx及SQL数据库中的表格等。文中提供了丰富的代码实例,帮助读者更好地理解和掌握数据导入的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python基础知识复习I

目录
1 文件导入
-1.1 txt文档
-1.2 csv文件
-1.3 xlsx文件(Excel)
-1.4 SQL数据库中的table
-1.5 tushare接口

1 文件导入

原始数据:
这里写图片描述

1.1 txt文档

说明:如果txt文档中含有中文字符,并且不是用UTF-8格式编码的,那么在导入python之前要用sublime转码为UTF-8格式,再导入。

代码1:默认数据原始文件的第一行是变量行

import pandas as pd
data2=pd.read_table("/Users/anita/Desktop/td.txt")
data2

这里写图片描述

代码2:原始数据没有变量行,用header=None属性直接读取数据

import pandas as pd
data2=pd.read_table("/Users/anita/Desktop/td.txt",header=None,)
data2

这里写图片描述

代码3:读取的原始数据没有变量行,自己用columns添加变量名这一行

import pandas as pd
data=pd.read_csv("/Users/anita/Desktop/testdata.csv",header=None)
data2.columns=['姓名','年龄','性别'] #添加表头变量名
data2.head()

这里写图片描述

1.2 csv文件

代码1:默认数据原始文件的第一行是变量行

import pandas as pd
data=pd.read_csv("/Users/anita/Desktop/testdata.csv")#括号里面是文件的绝对地址
data.head()

这里写图片描述
代码2:原始数据没有变量行,用header=None属性直接读取数据

import pandas as pd
data=pd.read_csv("/Users/anita/Desktop/testdata.csv",header=None,)
data.head()

这里写图片描述

1.3 xlsx文件(Excel)
import pandas as pd
data3 = pd.read_excel("/Users/anita/Desktop/test3.xlsx",sheetname="工作表1") #sheetname指定读取excel表里具体哪一个sheet
data3

这里写图片描述

1.4 SQL数据库中的table
import pandas as pd
import pymysql

#____step1:实现Python和MySQL数据库的连接,并获取数据
conn = pymysql.connect(host="192.168.5.4",user="root",passwd="abc666",db="mydatabase",charset="utf8")
#说明:如果就在本机操作的话,host为数据库的ip地址(在terminal中键入“ ifconfig | grep "inet " | grep -v 127.0.0.1”,第一个就是),db为当初创建的数据库名称。
cur=conn.cursor()                #获取一个游标
cur.execute('select * from tb2') #tb2为该数据库中的表名称
data4=cur.fetchall()
type(data4)                      #查看data4的数据类型

#____step2:把从MySQL中获取的raw data转换为方便pandas处理的DataFrame数据类型
data5=list(data4)
data6=pd.DataFrame(data5)

data6.columns=['学号','班级','姓名','年龄','性别'] #添加表头变量名
data6.head()

这里写图片描述

1.5 tushare接口

1) 获得单只股票数据

stk_his=ts.get_hist_data('300545',start='2017-04-09', end='2017-04-18')  #获取历史数据(大约300条记录) 
stk_his

stk_now=ts.get_realtime_quotes('300545') #获取当前数据,一条记录
stk_now

stk_tick = ts.get_tick_data('600848',date='2015-01-09') #获取高频交易数据

说明:
volume:成交量
price_change:价格变动
ma5:5日均价
ma20:20日均价
v_ma5:5日均量
v_ma10:10日均量
v_ma20:20均量
turnover:换手率

  • 单只股票历史数据

这里写图片描述

  • 单只股票当日数据

这里写图片描述

  • 单只股票高频数据:

这里写图片描述

2)获得多只股票数据

stocks = ['600219','000002','000623','000792']       
df = ts.get_realtime_quotes(stocks)  
df[['code','name','price','bid','ask','volume','amount','time']]  #只看自己关心的数据信息

这里写图片描述

获得CPI消费指数

Ins_CPI=ts.get_cpi()#  获得CPI指数
Ins_CPI

这里写图片描述

查看股票基本面

stkbas=ts.get_stock_basics()   
stkbas

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值