CMpolt基础绘制snp密度图

该篇文章介绍了如何使用R语言中的CMplot包对SNP数据进行处理,通过指定参数如plot.type=d、bin.size=1e6和col设置颜色代码,生成SNP位点在不同染色体上的距离矩阵图,并将结果保存为PDF格式,输出文件选项被设为True。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文件准备

需要一个数据框
第一列为snp名称
第二列为snp所在的染色体
第三列为snp位点

install.packages("CMplot")
library(CMplot)

df <- read.csv("out_filter.delta.snps_cmplot",header = F,sep = "\t")
head(df)
CMplot(df, plot.type="d",  bin.size=1e6, col=c("darkgreen", "yellow", "red"),
  file="pdf", dpi=400, file.output=TRUE, verbose=TRUE)
# plot.type: 绘图类型,此处为 "d",表示绘制距离矩阵图
# bin.size: 绘图时基因组距离矩阵的间隔大小,此处为 1e6,表示每隔 1e6 个碱基绘制一个格子
# col: 绘图时不同距离区间的颜色,此处为一个颜色向量,分别表示低、中、高距离区间的颜色
# file: 输出文件的格式,此处为 "pdf",表示输出为 PDF 格式
# dpi: 输出文件的 DPI(每英寸点数),此处为 400
# file.output: 是否输出文件,此处为 TRUE,表示输出文件
# verbose: 是否显示运行信息,此处为 TRUE,表示显示详细信息

在这里插入图片描述

### 关于 ROH 密度图的介绍 ROH(Runs of Homozygosity,纯合片段运行)是指基因组中连续的一系列 homozygous SNP(单核苷酸多态性)。这些区域通常用于研究近亲繁殖、种群历史以及疾病关联分析。在遗传学数据可视化领域,绘制 ROH 的密度分布可以帮助研究人员更直观地理解个体或群体中的纯合模式。 #### ROH Density Plot 的定义与用途 ROH 密度图是一种展示特定区域内 ROH 频率或长度的方法。通过这种图表可以观察到不同染色体上 ROH 的分布情况及其密集程度。这类图形对于识别高近交系数样本或者探索种群结构非常有用[^1]。 #### 数据可视化工具支持 ROH 可视化 多种生物信息学软件和库能够生成高质量的 ROH 密度图。例如 Vega 是一种标准数据库,适用于脊椎动物基因组注释,并且被广泛应用于基因组浏览器开发项目之中。它不仅提供了丰富的 API 接口来处理复杂的生物学数据集,还允许用户自定义样式以满足个性化需求。 另外,在 Python 生态系统里也有几个强大的包可用于此类任务: - **Matplotlib**: 提供基础绘图功能; - **Seaborn**: 基于 Matplotlib 构建而成,专注于统计图形制作; - **Plotly**: 支持交互式图表创建; 下面是一个简单的例子演示如何利用 Pandas 和 Seaborn 来构建基本版 ROH 密度图: ```python import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # 创建虚拟 DataFrame 表示每条染色体上的 ROH 范围 data = { 'Chromosome': ['chr' + str(i) for i in range(1, 23)] * 5, 'Start': [i*1e6 for _ in range(5) for i in range(1, 23)], 'End': [(i+1)*1e6 for _ in range(5) for i in range(1, 23)] } df = pd.DataFrame(data) plt.figure(figsize=(10, 6)) sns.histplot(df['End'] - df['Start'], bins=30, kde=True) plt.title('Distribution of ROH Lengths') plt.xlabel('Length (bp)') plt.ylabel('Frequency'); ``` 此脚本会生成一个直方图加上 KDE 曲线表示所有检测到的 ROH 片段长度分布状况。 #### 总结 综上所述,无论是采用专门设计好的在线平台还是编程语言内部模块都可以轻松实现对 ROH 数据的有效呈现形式之一即为其对应的密度曲线描绘工作提供便利条件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值