自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

lh1793的专栏

牧马人

  • 博客(253)
  • 资源 (6)
  • 收藏
  • 关注

原创 数据赋能(240)——数据管理——风险管理

数据风险管理的实施,可以确保数据的完整性、保密性、可用性和合规性,降低数据泄露、篡改、丢失等风险,保护企业的信息安全和资产安全,从而增强企业的竞争力和可持续发展能力。数据风险管理要求组织在数据处理过程中,遵守法律法规、最小化数据收集、分类分级管理、安全保护、风险识别与评估、监控与审计、应急响应、持续改进和培训与教育等原则,以确保数据的完整性、保密性、可用性和合规性,降低数据风险对组织的影响。数据风险管理:在数据生命周期中,为确保数据的完整性、保密性、可用性和合规性,采取的一系列预防、监控和应对措施的原则。

2025-05-29 01:30:00 512

原创 数据赋能(239)——数据管理——风险评估

数据风险评估强调在数据管理过程中,通过遵循完整性、保密性、周期性、差异性、系统性、全面性等原则,以及风险分类与评估、评估结果量化和持续改进与监控等措施的实施,全面识别、分析和应对潜在的数据风险,确保数据的安全性、完整性和可用性。数据风险评估的实施方法是一个系统性、结构化的过程,旨在全面识别、分析和评价数据安全风险,并提出相应的应对措施。数据风险评估:在数据管理过程中,为了识别、分析和应对潜在的数据风险,确保数据的安全性、完整性和可用性,所应遵循的一系列指导原则。数据风险评估的主要作用。

2025-05-28 01:30:00 1797

原创 数据赋能(238)——数据管理——数据分类管理

通过数据分类,可以明确不同数据的敏感性和重要性,从而对不同类别的数据实施不同的安全策略,提高数据的安全性。数据分类管理要求在数据管理过程中,根据数据的性质、用途、来源等因素,将数据划分为不同的类别,并针对不同类别的数据采取不同的管理措施。大型企业实施了数据分类管理,将客户数据、财务数据和研发数据等敏感数据进行了分类,并为每类数据制定了不同的管理策略。数据分类管理是在数据管理过程中,根据数据的性质、用途、价值等因素,将数据划分为不同类别,并对各类数据实施相应的管理策略的原则。基本信息、交易记录、偏好。

2025-05-27 01:30:00 1350

原创 数据赋能(237)——数据管理——数据审计

组织应制定明确的审计计划、遵循标准化的审计程序、进行合规性检查和风险评估。建议组织将数据审计纳入其日常管理工作中,形成长效机制,以持续提升数据质量和组织效率。数据审计原则旨在确保数据审计活动的全面、实时、可追溯、保密、合规、风险导向、持续改进和自动化智能化。通过遵循这些原则,组织可以更有效地管理数据风险,确保数据资产的安全和合规性。这些原则确保数据审计活动的高效、准确和合规,以支持组织的数据治理、风险管理和合规性要求。数据审计原则:在对组织的数据资产进行全面审计过程中应遵循的准则和指导思想。

2025-05-26 01:30:00 502

原创 数据赋能(236)——数据管理——预防性原则

它强调在数据收集前预先评估可能的风险和问题,并据此制定相应的预防措施,从而确保数据收集过程的顺利进行和数据的质量。数据预防性原则要求在数据管理的全过程中,通过多种措施的实施,降低数据风险,确保数据的准确性、完整性和安全性。这一原则强调在数据产生、收集、存储、处理和使用的各个环节,通过预防性的措施来降低数据风险,提高数据管理的效率和效果。数据预防性原则:在数据生命周期过程中,采取一系列预防性的措施,以减少数据错误、数据泄露和数据滥用等风险,确保数据的准确性、完整性和安全性。

2025-05-25 01:30:00 1065

原创 数据赋能(235)——数据管理——数据分层原则

数据分层原则的核心是根据数据的特性和业务需求,将数据划分为不同的层级,以实现数据的高效管理、优化查询性能和提升数据安全性。评价数据分层原则在数据管理中实施效果的关键指标涉及数据分类分级覆盖率、数据安全性提升、数据合规性、数据使用效率、员工意识和培训效果以及成本效益分析等多个方面。数据分层原则是基于数据的重要性和敏感性,将数据划分为不同的层次,以便进行有针对性的管理和保护。数据分层原则:在数据管理和数据架构设计中,根据数据的用途、访问频率、重要性等因素,将数据划分为不同层级的原则。

2025-05-24 01:30:00 805

原创 数据赋能(234)——数据管理——标准化原则

标准化原则不仅可以提高数据质量和准确性、简化数据处理和分析、促进数据共享和流通,还可以降低业务风险和法律风险、支持决策制定和优化、增强模型算法性能以及提高数据可解释性和可视化效果。通过以上措施的实施,机械制造企业可以有效地避免忽视“标准化原则”所带来的问题,提高数据处理效率、保障数据质量和支持决策制定,从而提升企业的市场竞争力和可持续发展能力。数据标准化原则:在数据处理和管理过程中,为了确保数据的准确性、一致性和可比性,对数据进行统一的定义、格式化和编码处理的原则。

2025-05-23 16:37:19 675

原创 数据赋能(233)——数据收集——非歧视性准则

实施非歧视性准则需要在数据收集的各个环节都采取相应的措施,从设计无偏见的数据收集工具、选择合适的受访者、培训数据收集人员到数据验证和清洗等,都需要确保数据的公正性和客观性。遵循非歧视性准则确保了在数据收集过程中,不会因个人或群体的特征(如性别、种族、年龄、宗教信仰等)而产生任何形式的歧视或偏见,从而保证了数据的公正性和客观性。非歧视性准则有助于保障数据的公正性和客观性、提高数据的全面性和代表性、促进跨文化交流和理解、符合法律法规和伦理要求以及增强研究的可信度和影响力。

2025-05-22 01:30:00 576

原创 数据赋能(232)——数据收集——文化敏感准则

通过遵循这一准则,我们可以确保数据收集活动的文化适宜性和包容性,减少文化冲突和误解的可能性,同时促进不同文化之间的交流和理解。文化敏感准则不仅能够避免文化冲突和误解,提高数据质量和准确性,还能够增强研究的文化适宜性和包容性,促进跨文化交流和理解,并保护个人隐私和权利。为了遵循文化敏感准则,建议在数据收集过程中注重尊重和理解文化差异,选用适当的方法和工具,遵循文化禁忌和道德规范。文化敏感准则:在数据收集过程中,必须充分考虑不同文化背景下的差异和敏感性,以确保数据的准确性和避免可能的文化冲突和误解。

2025-05-21 01:30:00 859

原创 数据赋能(230)——数据收集——最小化原则

最小化原则”在数据收集领域中的核心含义是确保在收集数据时,仅获取实现特定目的所必需的最少量信息,并避免收集与目的无关的个人信息。最小化原则强调只收集实现特定目的所需的最少数据,避免收集与目的无关的个人信息,从而保护用户的隐私权和数据安全。“最小化原则”有助于保护个人隐私和数据安全,降低数据滥用和泄露的风险,同时确保数据收集的合法性和合规性。只有这样,企业才能在激烈的市场竞争中赢得用户的信任和支持。通过实施上述方法,可以在数据收集中有效遵循最小化原则,保护个人隐私和数据安全,同时降低数据泄露和滥用的风险。

2025-05-20 01:30:00 824

原创 数据赋能(231)——数据收集——数据协同原则

数据协同原则在于通过数据共享和协同工作,打破部门壁垒,促进企业内部不同部门之间的沟通和协作,以及企业与外部合作伙伴之间的合作与交流,从而提高企业的决策效率和执行力,提高企业的竞争力,并推动整个产业链的协同发展。同时,在数据共享和协同的过程中,需要注重数据的安全和隐私保护。实施数据协同原则的关键在于建立跨部门协作机制、制定统一的数据标准和规范、选择合适的数据收集工具和技术、建立数据共享和协同平台以及制定数据质量控制和保障措施。数据协同原则:通过数据共享和协同,打破部门壁垒,促进企业内部和外部的合作与交流。

2025-05-20 01:30:00 587

原创 数据赋能(229)——数据收集——一致性原则

通过遵循一致性原则,可以提高数据的质量和可靠性,为业务决策提供更加准确和可靠的支持。一致性原则可以提高数据的可靠性和有效性,支持准确的数据分析和决策制定。通过以上方法,可以有效地实施数据收集中的一致性原则,确保数据的准确性、完整性和一致性,为数据分析和决策支持提供可靠的数据基础。通过遵循以上原则和措施,电商公司可以确保收集到的用户购买数据具有一致性和可比性,为后续的数据分析和决策支持提供有力的保障。这些关键指标可以从不同角度评估数据收集中遵循一致性原则的效果,为数据质量的提升提供有针对性的指导和建议。

2025-05-19 01:30:00 1176

原创 数据赋能(228)——数据收集——可重复性原则

实施数据收集中的可重复性原则需要明确数据收集方法和过程、制定标准化操作程序、详细记录数据收集过程、采用可重复的数据分析工具和技术、确保数据源的可靠性和可访问性、提供足够的文档和说明、进行培训和指导以及定期审查和更新。需要注意的是,不同领域和具体研究的数据收集可能具有不同的特点和要求,因此在制定效果评价关键指标时需要根据实际情况进行适当调整。可重复性原则不仅能够确保实验结果的科学性和可靠性,提高研究的数据可验证性,还能促进知识积累和进步,增强公众对研究的信任,优化资源利用,以及提供适应性和灵活性。

2025-05-18 01:30:00 904

原创 数据赋能(227)——数据收集——多样性准则

在实际操作中,可以根据具体的业务需求和场景,选择适合的指标进行效果评价,并设定合理的阈值或标准来判断数据收集是否满足多样性准则的要求。通过以上步骤的实施,可以确保在数据收集中遵循多样性准则,收集到更全面、更客观的数据,为企业的发展和决策提供有力支持。因此,商业企业在未来进行数据收集工作时,应充分重视数据的多样性,从多个渠道和来源收集数据,以提高数据的质量和价值。多样性准则有助于提高数据的全面性和准确性、增强数据的泛化能力、减少数据偏见和主观性、提高数据质量,并支持复杂分析和决策的制定。

2025-05-17 01:15:00 1760

原创 数据赋能(226)——数据收集——客观性准则

为了遵循客观性准则,确保数据的客观性和准确性,企业需要建立科学的数据收集和分析机制,并注重数据的真实性、采样的科学性和数据的客观性。这一原则要求软件测评服务组织在收集、分析和评估软件数据时,必须保持客观、中立的态度,确保数据的真实性和准确性,以提供可靠的软件测评结果。同时,在数据分析和评估过程中,该组织也受到了一些利益关系的干扰,导致测评结果偏向于软件开发商的利益,而非客观反映软件的真实性能和用户体验。实施客观性准则需要遵循一系列具体的步骤,以确保数据的真实性和可靠性,并避免主观偏见和臆断的影响。

2025-05-16 11:06:57 528

原创 数据赋能(225)——数据收集——目的性原则

目的性原则强调在进行数据收集活动时,必须有清晰、明确的目的或目标,并且所收集的数据应当严格限制在用于实现这些目的或目标的范围内。这一原则旨在确保数据收集活动的有效性和针对性,避免盲目、无效的数据收集,从而优化资源的使用,提高数据的质量和价值。在数据收集中,目的性原则是确保数据收集活动有明确的方向和目标,避免无效或冗余的数据收集,从而提高数据的质量和效率。因此,电力企业在未来进行数据收集工作时,应充分重视目的性原则的重要性,确保数据收集工作的针对性和有效性。

2025-05-16 11:04:48 608

原创 数据赋能(224)——数据与业务协同——数据动态调整原则

通过实施数据动态调整,企业能够更准确地捕捉业务趋势,优化数据质量,以及提高资源利用效率。数据动态调整原则:在数据处理、分析和应用过程中,根据业务需求、数据变化或技术演进等因素,对数据进行实时或定期的调整和优化,以确保数据的准确性、有效性和适应性。数据动态调整原则要求我们在数据处理、分析和应用过程中保持灵活性和适应性,根据业务需求、数据变化或技术演进等因素对数据进行实时或定期的调整和优化。这些关键指标共同构成了遵循数据动态调整原则的效果评价体系,通过量化评估和调整可以确保数据动态调整的有效性和可持续性。

2025-05-16 11:03:54 738

原创 数据赋能(223)——数据与业务协同——数据灵活性原则

同时,随着技术环境的不断革新,新的数据技术和工具层出不穷,数据灵活性原则使我们充分利用新技术提升数据应用的效率和质量。数据灵活性原则是数据适应性原则实现的基础。数据灵活性原则:在数据收集、处理、分析和应用的过程中,数据模型、数据服务、系统或解决方案、数据赋能方案应展现出高度的灵活性,以迅速调整其策略和方式,快速响应和迭代,从而适应业务环境、业务需求和技术环境的变化。这些关键指标可以帮助我们全面评价在数据应用中遵循数据灵活性原则的效果,从而指导我们不断优化和调整数据应用策略,提高数据应用的质量和效率。

2025-05-14 01:30:00 709

原创 数据赋能(222)——数据与业务协同——数据适应性原则

遵循数据适应性原则在数据应用中的效果评价可以从业务场景匹配度、策略调整的灵活性和及时性、数据应用效果、系统灵活性和可扩展性、用户满意度、数据质量提升、风险降低以及投资回报率等多个方面进行。这些评价指标可以帮助企业全面、客观地评估数据应用的效果,并为未来的数据应用提供有益的参考。因此,企业应加强数据应用技术的更新与应用,建立数据更新机制,并关注客户需求变化,以提高数据应用的适应性和灵活性。数据适应性原则能够确保数据处理和应用的所有过程能够紧密贴合不同的业务场景和需求,提供准确、及时、有价值的数据支持。

2025-05-13 01:15:00 455

原创 数据赋能(221)——数据与业务协同——业务融合原则

业务融合原则的重要性在于确保数据能够直接、有效地服务于业务流程,从而为企业决策提供精准、及时的支持。数据与业务融合原则的目的是确保数据服务能够紧密服务于业务流程和业务决策,提高企业的运营效率、决策质量和创新能力,从而推动企业的持续发展。综上所述,数据与业务融合原则的主要作用在于优化业务流程、增强跨部门协作、快速响应市场变化、提升数据价值以及支持创新和发展。通过以上关键指标的评价,可以全面评估遵循数据与业务融合原则的效果,为未来的业务发展提供有力支持。图 1-3数据与业务融合原则关注焦点。

2025-05-12 01:15:00 2241

原创 数据赋能(220)——数据与业务协同——业务协同原则

业务协同原则的目的是通过深入且精准的数据分析,能够更准确地把握业务发展的方向,从而做出更为明智的决策。在业务协同的过程中,数据能够提供更加准确、及时的支持,助力决策者做出更为明智和有效的决策。同时,为了确保评价的准确性和有效性,建议定期收集和分析这些指标的数据,并据此进行针对性的改进和优化。业务协同原则的实施过程,旨在将数据服务与业务运营紧密结合,确保数据服务能够有效支持业务发展和创新。业务协同原则:在企业运营和发展过程中,数据与业务之间的紧密结合、协调和相互促进。图 1-2 业务协同原则的关注焦点。

2025-05-11 01:15:00 680

原创 数据赋能(219)——数据与业务协同——战略协同原则

数据战略协同原则在数据应用中的实施方法主要包括明确数据战略与企业整体发展战略的关联、跨部门数据协同、基于数据的决策制定、数据驱动的业务优化、持续优化数据战略、建立数据文化以及采用先进的技术和工具等方面。数据战略协同原则要求企业将数据战略与整体发展战略紧密结合,通过多方面的措施,确保数据资源的充分利用和价值的最大化,从而支持业务决策和运营优化,增强企业的竞争力和可持续发展能力。数据战略协同原则的效果评价关键指标主要围绕数据战略与业务战略的一致性、数据治理体系的健全性、数据战略的执行效果等方面。

2025-05-10 01:15:00 915

原创 数据赋能(218)——质量管理——异常处理原则

数据异常处理原则:在数据处理和分析过程中,针对可能出现的异常值或不符合预期的数据,采取的一系列处理措施和原则,以确保数据的准确性和可靠性,为业务决策和运营提供有效支持。数据异常处理原则的实施方法旨在确保数据中的异常值得到妥善处理,从而保持数据集的准确性和可靠性。通过遵循以上方法和注意事项,可以有效地实施数据异常处理原则,提高数据集的准确性和可靠性,为数据分析和业务决策提供有力支持。通过遵循以上步骤和注意事项,可以有效地实施数据异常处理原则,提高数据质量和价值,降低风险,并优化决策过程。

2025-05-09 01:00:00 1179

原创 数据赋能(218)——质量管理——异常处理原则

数据异常处理原则:在数据处理和分析过程中,针对可能出现的异常值或不符合预期的数据,采取的一系列处理措施和原则,以确保数据的准确性和可靠性,为业务决策和运营提供有效支持。数据异常处理原则的实施方法旨在确保数据中的异常值得到妥善处理,从而保持数据集的准确性和可靠性。通过遵循以上方法和注意事项,可以有效地实施数据异常处理原则,提高数据集的准确性和可靠性,为数据分析和业务决策提供有力支持。通过遵循以上步骤和注意事项,可以有效地实施数据异常处理原则,提高数据质量和价值,降低风险,并优化决策过程。

2025-05-09 01:00:00 697

原创 数据赋能(217)——质量管理——数据质量优先原则

此外,企业A还加强了与客户的沟通,明确了解客户的需求和期望,确保提供的数据服务能够满足客户的业务需求。在数据应用中,数据质量优先原则是指在进行数据分析和利用之前,应确保数据的质量,将数据质量视为至关重要的前提和基石。这一原则强调数据质量在数据驱动决策和业务优化中的核心地位,确保数据的准确性、完整性、一致性和可靠性,以支持有效的数据分析和业务应用。数据质量优先原则:在数据处理和使用的全过程中,将数据质量置于首要地位,确保数据的准确性、完整性、一致性、及时性和可用性,以满足业务需求并支持有效的决策制定。

2025-05-08 01:00:00 559

原创 数据赋能(216)——质量管理——准确性原则

建议企业投资于先进的数据处理和分析技术,以及建立一个持续的数据质量监控和管理机制,以确保整合后的数据的准确性。企业应当重视数据准确性原则的实施和执行,确保数据的真实性和可靠性,为企业的发展提供有力支持。数据准确性原则:确保数据在记录、处理、存储和传输过程中真实、准确地反映其实际含义和状态,无虚假、无误差、无遗漏,并能够准确反映其所建模的“真实世界”的实体。通过遵循以上方法和注意事项,可以有效地实施数据准确性原则,提高数据的准确性和可靠性,为组织的决策和业务发展提供有力支持。

2025-05-07 01:00:00 702

原创 数据赋能(215)——质量管理——有效性原则

相反,如果该公司遵循有效性原则,确保收集到的数据真实可靠,那么它就能够准确评估该药物的效果和安全性,为药物上市提供有力的支持。数据有效性原则主要关注确保数据的真实、准确、完整和符合业务逻辑,是数据管理的重要基础。数据有效性原则是指在数据收集、存储、处理和应用过程中,确保数据具有实际意义和符合业务逻辑,能够满足特定需求的原则。数据有效性原则:确保收集到的数据真实反映实际情况,避免收集到无效或误导性的数据。通过遵循以上方法和注意事项,可以有效地实施数据有效性原则,提高数据的质量和价值。

2025-05-06 01:00:00 546

原创 数据赋能(214)——质量管理——一致性原则概述

数据一致性原则要求在数据管理、处理和应用的整个过程中,确保不同来源、不同时点以及不同系统中的数据在关键指标上保持一致性。通过系统间数据同步、时间戳和版本控制、数据校验与验证、数据标准化与规范化、数据清洗与整合、变更管理和审计以及持续监控与改进等措施的实施,可以确保数据的一致性和可靠性,为业务决策和运营提供有力支持。数据一致性原则:在数据管理、处理和应用的整个生命周期中,确保不同来源、不同时点以及不同系统中的数据在关键指标上保持一致性。一致性原则可以提高数据的可靠性和有效性,支持准确的数据分析和决策制定。

2025-05-05 01:00:00 713

原创 数据赋能(213)——质量管理——完整性校验原则

通过校验和验证,可以发现并纠正数据中的错误和冲突,从而提高数据的可靠性。数据完整性校验原则的实施方法旨在确保数据的准确性、完整性和一致性,从而保护数据免受未经授权的篡改或破坏。这一原则要求对数据的输入、存储、传输和输出进行严格的检查和核实,以防止数据错误、丢失或篡改,确保数据的可信度和可靠性。数据完整性校验原则:在数据管理和处理过程中,为了确保数据的准确性、完整性和一致性,对数据进行一系列校验和验证的过程。通过遵循以上方法和注意事项,可以有效地实施数据完整性校验原则,提高数据的可靠性、准确性和一致性。

2025-05-04 00:45:00 557

原创 数据赋能(212)——质量管理——统一性原则

综上所述,数据完整性原则的关注焦点主要集中在数据的准确性、一致性、完整性、可靠性和可验证性等方面,同时还需要关注数据生命周期的管理和数据治理的建立。数据统一性原则在数据管理的各个环节中都具有不可忽视的重要性。它确保了数据在不同部门、系统和时间点上的一致性和可比性,为企业的决策制定、业务分析、风险管理等提供了准确、可靠的数据支持。数据统一性原则:在数据的收集、处理、存储和传输过程中,对于同一类数据,采用统一的定义、命名规范、格式、内容、精度等标准,以确保数据在不同部门、系统和时间点上的一致性和可比性。

2025-05-03 16:19:13 581

原创 数据赋能(211)——质量管理——数据可验证性原则

数据可验证性原则的实施方法主要包括制定标准、选择方法和工具、设计流程、使用标准物质比对、人员重复测试、利用内置规则和类型、建立团队、定期验证、审计检查和记录报告等方面。数据可验证性原则的实施方法主要关注确保数据的可检验性和可重复性,以便在需要时能够验证数据的准确性、完整性和一致性。数据可验证性原则确保了数据的准确性、可信度、可共享性、可审计性、推动数据科学发展、减少数据欺诈和误导以及支持决策制定等方面。遵循数据可验证性原则,确保数据的真实性和可信度,需要采取一系列措施来确保数据收集的数据可验证性。

2025-05-03 16:17:44 1231

原创 数据赋能(210)——质量管理——可靠性原则

数据可靠性原则的实施需要贯穿数据收集、处理、分析和应用的整个过程。通过选择可靠的数据源、制定严格的数据处理流程、使用可靠的数据分析工具和方法以及实施数据安全性措施等方法,可以确保数据的准确性、完整性、一致性和可信性,满足决策和业务活动对数据质量的要求。数据可靠性原则在数据收集、处理、分析和应用的过程中发挥着至关重要的作用,它有助于确保数据的质量,提高决策效率和准确性,并增强企业的竞争力。数据可靠性原则:在数据生命周期内,确保数据的准确性、完整性、一致性和可信性,以满足决策和业务活动对数据质量的要求。

2025-05-03 16:17:03 603

原创 数据赋能(209)——质量管理——时效性原则

通过关注数据更新频率、决策响应时间、决策准确性、业务影响和数据质量等关键指标,可以全面评估在数据收集、处理、分析和应用的过程中遵循数据时效性原则的效果。数据时效性原则在数据收集、处理、分析和应用的过程中确保数据在特定时间范围内保持其有效性和相关性,为决策提供准确、及时的依据。通过实施以上方法,企业可以确保在数据收集、处理、分析和应用的过程中遵循数据时效性原则,提高决策效率和准确性,从而增强企业的竞争力。时效性原则在数据收集、处理、分析和应用的过程中至关重要,因为数据的质量和价值往往会随时间推移而发生变化。

2025-05-03 16:16:20 1701

原创 数据赋能(208)——质量管理——及时性原则

在数据处理、分析和应用过程中,数据及时性原则确保了数据在需要时能够迅速、准确地被获取、更新和传递,为决策和业务需求提供了时效性保障。以电商行业为例,通过及时收集用户的浏览、购买和搜索等数据,电商平台可以实时分析用户的购物偏好和需求变化,从而调整商品推荐和营销策略。及时性原则在可以为企业提供最新、最准确的信息支持,帮助企业做出更快速、更准确的决策。数据及时性原则:在数据收集、处理、分析和应用的过程中,确保数据的获取、更新和传递能够在最短的时间内完成,以满足决策和业务需求的时效性要求。

2025-05-03 16:14:54 625

原创 数据赋能(207)——原则与原理——概念要素

在各学科领域及实践场景之中,这些概念均发挥着至关重要的作用,它们相互间关联紧密、彼此支撑,共同构建起对事物全面且深入的认知体系。为了有效说明原则与原理,需要对几个概念要素及其之间的关系有更为专业的理解。概念要素是对某一概念进行全面理解和分析时所涉及的关键组成部分,它们共同构成了对概念的完整认知。总之,定义、目的、核心、本质和作用这几个概念在理解和分析事物时相互关联、相互影响。它们共同构成了事物的完整理解和应用框架,为实现目的提供了重要的指导和支持。

2025-04-26 01:15:00 239

原创 数据赋能(206)——原则与原理——标准方法

数据相关标准为数据的收集、处理、存储、交换和使用提供了统一的规范和指导,有助于确保数据的质量、安全性和有效性。数据相关标准如结构标准、语义标准、代码标准、标识标准、格式标准、数据质量标准、数据交换标准等。遵守标准意味着符合一定的要求和规定,是一种客观的行为。准则更多地关注行为的原则和道德规范,而标准则侧重于对产品、服务和行为的客观要求。请注意,以上框架仅提供了一个基本的参考结构,具体的标准描述模式可能因不同的标准而有所不同。它是一种量化或可衡量的规定,是对某种事物的质量、性能、规格等方面的要求。

2025-04-24 01:30:00 705

原创 数据赋能(205)——原则与原理——准则方法

这种模式旨在帮助读者理解准则的定义、目的、重要性、应用方式以及可能的影响。准则的制定和遵守往往具有一定的灵活性和主观性,因为它们受到文化、宗教、传统等因素的影响。例如,在处理患者信息时,医院需要遵循相关的法律法规,尊重患者个人隐私,这体现了对隐私保护这一行为准则的遵守。数据相关的准则通常是基于业务需求、行业标准、法律法规、数据质量要求、技术可行性以及企业战略目标等多方面的综合考虑而产生的,反映了人们在数据领域内应该遵循的行为规范。准则通常指的是一种行为或行事的原则,是对行为的规范和指导。

2025-04-23 04:00:00 233

原创 数据赋能(204)——原则与原理——原理方法

原理描述模式(PrincipleDescriptionPattern)是一种用于清晰阐述和解释某一原理的结构化方法。原理更加侧重于客观规律性,它是事物本身固有的、本质的、必然的联系,具有不以人的意志为转移的客观性。在数据赋能业务领域,原理更多是指数据如何运作、如何影响业务结果等基础性的、本质性的规律。原理更多地关注事物本身的客观规律,而原则侧重于指导人们的行为和决策。原理,则通常指的是自然科学和社会科学中具有普遍意义的基本规律。原理是在大量观察、实践的基础上,经过归纳、概括而得出的。

2025-04-22 23:08:27 577

原创 数据赋能(203)——原则与原理——原则方法

原则通常提供了在特定情况下行动的指南,目的是帮助我们做出更好的决策或执行更好的行动。然而,原则并不仅仅局限于“怎么做更好”,它更侧重于提供一种长期、稳定且经过验证的法则,这些法则是基于对事物本质和客观规律的理解。原则表现为对某一事物的客观规律的主观认识,反映了不依赖于人的主观意志而存在的客观规定性。然而,虽然原则带有主观性,但它们的基础是客观规律,而不是完全基于个人的主观臆断。例如,数据优化原则就是在进行数据优化过程中需要遵循的一些基本准则和指导思想,它们是基于对数据和业务规律的深入理解而形成的。

2025-04-21 11:27:07 878

原创 数据赋能(202)——开发:数据开发管理——技术方法、主要工具

技术方法数据开发管理的技术方法主要包括以下几种:主要工具数据开发管理的主要工具可以归纳为以下几类:

2024-09-11 23:03:06 749

用户手册编写指南.pdf

本规范描述用户手册文档格式与内容的要求,这些要求是在总结公司已有的实践的基础上,参考行业相关标准与实践编写的。 开发人员在编写用户手册文档时,应满足本规范的的要求。 本规范主要内容如下: 1) 总体要求 2) 基本框架 3) 正文框架 4) 内容框架 5) 手册内容规范 6) 技术与方法 7) 用户业务手册 8) 用户技术手册 9) 文档格式1 10) 文档包装 本规范主要起草人:刘宏。 这个资料是否能够读者带来收益,一直未确定,因此没有最后完成。若是您认为资料有用请给予评价,并请给出内容增加与修改建议。

2019-08-15

05 创建子程序检查表.docx

检查程序实现结果的标准。确保软件开实现结果满足于要求。

2019-08-15

03 结构设计检查表.docx

检查详细设计结果的标准。确保在软件开发前,详细设计满足于要求。

2019-08-15

02 架构检查表.docx

检查架构设计结果的标准。确保在软件开发前,架构设计满足于要求。

2019-08-15

需求检查表.docx

需求作为设计的输入应该满足的哦标准要求

2019-08-15

ITIL V2、V3与ISO20000流程比较

ITIL V2、V3与ISO20000流程比较

2014-07-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除