基于回溯法和分支限界法求解01背包问题

本文介绍了如何使用回溯法和分支限界法来解决经典的01背包问题。通过详细描述问题描述、算法设计、正确性证明以及复杂性分析,阐述了两种方法的思路和区别。回溯法采用深度优先搜索,分支限界法则利用广度优先或最小耗费优先策略寻找最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于回溯法和分支限界法求解01背包问题

问题描述

现有n个物品,1个背包。对物品i,其价值为viv_ivi ,重量为WiW_iWi,背包的容量为WWW,如何选取物品使得背包里转入物品的总价值最大?

在约束条件为:选取物品的重量小于等于背包重量的情况下,尽可能让背包中物品的总价值最大。

算法设计

01背包问题是自己选取问题,该问题的解空间可用子集树表明。设currentTotalValue是当前已经装入背包的物品的总价值、residueValue是剩余的未知是否装入物品的总价值,也就是未被搜索到物品的总价值、pbest是当前已经找到的最优解的价值。

使用两个等长的一维数组存储物品的重量weights[n]weights[n]weights[n]和价值values[n]values[n]values[n],这里第iii个物品的重量就是weights[i]weights[i]weights[i],价值就是values[i]values[i]values[i]

回溯法

回溯法的基本思想,在包含问题所有解的解空间树中,按照深度优先的策略,从根节点出发搜索解空间树。搜索解空间的任意一个节点时候,只要其左儿子节点是一个可行节点,搜索就进入其左子树。当右子树有可能包含最优解时才进入右子树搜索,否则将右子树剪去。

分支限界法

分支限界法解空间的定义、解空间的组织结构、剪枝函数都与回溯法相同。不同的是解空间的搜索方式,这里采用广度优先搜索。

  • 针对当前扩展节点,一次性生成其所有孩子节点,如果孩子节点满足约束条件和限界条件,则将该孩子节点插入到活结点队列末尾;反之则舍弃。
  • 从活结点对了中选取待扩展节点。
  • 搜索过程直到活结点队列为空时停止。

算法描述

回溯法

backtrack(i, weights[n], values[n], W){
	if i > n
		pbest = currentTotalValue
		return
	if weights[i] + currentTotalWeight <= W
		x[i] = 1
		currentTotalWeight += weights[i]
		currentTotalValue += values[i]
		backtrack(i+1, weights[n], values[n], W-currentTotalWeight)
		currentTotalWeight -= weights[i]
		currentTotalValue -= values[i]
	if bound(i+1, W-currentTotalWeight, currentTotalValue, weights[n], values[n]) > pbest
		x[i] = 0
		backtrack(i+1, weights[n], values[n], W-currentTotalWeight)
}


分支限界法

branch(weights[n],values[n],W){
	i = 0, currentTotalWeight = 0, currentTotalValue = 0, queue = null
	up = 0
	while true{
		if currentTotalWeight+w[i] < W
			if currentTotalValue + values[i] > pbest
				pbest = currentTotalValue + values[i]
		up = bound(i+1)
		if up > pbest
			queue.push(new Node(currentTotalWeight, currentTotalValue,
            				up , false , i+1))
        node = queue.back()
        if(node = null)
         	breaks
        currentTotalWeight = node.currentTotalWeight
        currentTotalValue = node.currentTotalValue
        up = node.up
        i = node.level
        if i == n+1
        	stNode = node.ptr
     }
        if(stNode != null)
        	for j=n to 1 by -1
        		x[j] = stNode.isLeft?1:0
        		stNode = stNode.parent
	}
}

正确性证明

复杂性分析

回溯法

  • 判断约束函数需要O(1)O(1)O(1),在最坏的情况下有2n−12^n-12n1个左孩子,约束函数耗时最坏为O(2n)O(2^n)O(2n)

  • 计算上界界限函数需要O(n)O(n)O(n)时间,最坏情况下有2n−12^n-12

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值