《机器学习技法》第十讲:Random Forest

本文详细探讨了机器学习中的Random Forest算法,包括其工作机制、Out-Of-Bag误差估计、特征选择过程以及如何在实践中应用Random Forest进行预测和决策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第十讲:Random Forest


1、Random Forest Algorithm

Bagging:通过平均来降低变化量。
Decision Tree:对不同的数据敏感,变化量大。
aggregation of  aggregation  :用bagging的方式把一堆decision tree结合起来。



RF = bagging + CART
1、并行化、高效
2、继承CART的优点
3、消除完全生长CART的overfit缺点



得到有差异性的g:
随机抽取dataset(bagging)
随机抽取feature(低维投影,特征子空间)
RF = bagging + 随机特征CART



特征 = 投影矩阵*原始特征
投影到原始方向:特征随机抽取
投影到任意方向:特征结合后随机抽取,more powerful。
原始的RF考虑在 CART每一次分支时 将特征结合起来后低维投影。
RF = bagging + 随机结合特征CART

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值