Cognitive Inference:认知推理下的常识知识库资源、常识推理测试评估与中文实践项目索引

Cognitive Inference项目关注于认知推理、常识知识库与常识推理评估。作者通过整理现有资源,介绍逻辑知识库构建、事件推理,并提供如商品概念图谱、顺承事件图谱等实例。项目涵盖了纵向和横向常识逻辑,还涉及逻辑推理机与推理能力评估,旨在推动常识推理在人工智能中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CognitiveInference

Cognitive Inference,认知推理、常识知识库、常识推理与常识推理评估的系统项目,以现有国内外已有的常识知识库为研究对象,从常识知识库资源建设和常识推理测试评估两个方面出发进行整理,并结合自己近几年来在逻辑性推理知识库的构建、应用以及理论思考进行介绍。具体包括已有常识知识库项目资源介绍、逻辑推理类知识库的项目实践集合、常识推理测试评估项目集合。

项目地址 :https://github.com/liuhuanyong/CognitiveInference/

项目介绍

常识推理是人工智能的高级阶段,基于已有知识,运用知识推理机技术,完成限定领域决策行为,能够在充分减少人为劳动的同时,产生经济效益。例如,基于已知知识进行知识推理,采用如事件驱动传导路径等进行知识发现,能够辅助于业务的推理和辅助决策,在智能投研进行未知风险预警、在舆情分析中对公司进行舆论控制和监控。
“逻辑知识库”+"逻辑推理机"的混合协作模式,是目前实现以上目的的重要方式。
"逻辑知识库"作为描述现实社会事件之间传导关联的库,需要在规模、质量,领域针对性三个方面入手进行解决。具体地,作者通过对自己所涉及的推理项目进行系统回顾,认为,推理类常识知识库,应该从纵向和横向两个维度出发进行构建。

一、纵向常识逻辑

纵项常识逻辑需要考虑的是类人的抽象和概括能力,这个需要抽象、概念性、上下位知识的构建,可以让机器模仿人类的举一反三和概括总结的技能。例如,作者对纵向常识逻辑,形成了以下工作:
1、上下位关系图谱项目:HyponymyExtraction.

上下位这种语义关系是整个词汇语义关系中的一个重要内容,通过上下位关系,可以将世间万物进行组织和练联系起来,对于增进人们对某一实体或概念的认知上具有重要帮助,自然语言文本中存储着大量的上下位关系知识,如经过语言专家编辑整理形成的概念语义词典,如同义词词林,中文主题概念词典,hownet等,也存在开放百科知识平台当中,有效地利用这些信息,能够支持多项应用基于知识概念体系,百科知识库,以及在线搜索结构化方式的词语上下位抽取。项目实现为用户输入一个需要了解的词语,后台通过查询既定知识库,从百科知识库,在线非结构化文本中进行抽取,形成关于该词语的上下位词语网络,并以图谱这一清晰明了的方式展示出来。

2、电商商品概念与销售知识图谱项目:GoodsKG.

项目以京东电商为实验数据来源,采集京东商品目录树,并获取其对应的底层商品概念信息,组织形成商品知识图谱。目前,该图谱包括有概念的上下位is a关系以及商品品牌与商品之间的销售sale关系共两类关系,涉及商品概念数目1300+,商品品牌数目约10万+,属性数目几千种,关系数目65万规模。该项目可以进一步增强商品领域概念体系的应用,对自然语言处理处理的几个下游应用带来帮助,如商品品牌识别,商品对象及属性级别情感分析,商品评价短语库构建,商品品牌竞争关系梳理等提供基础性的概念服务。

3、抽象知识图谱项目:AbstractKnowledgeGraph.

项目提出了一个抽象知识图谱的项目,目的是对知识抽象与泛化提供一个思路并初步实践,介绍了抽象知识图谱,对抽象图谱的现实需求进行论述。介绍了中文抽象图谱的相关工作。包括 CN-Probase,Hownet,大词林,百度百科Schema等,并给出了之前关联的项目地址。本项目提出了一个可用的抽象知识图谱构建路线,提出抽象知识图谱的实施路线并给出抽象接口实践。建成抽象知识图谱,目前规模50万,支持名词性实体、状态性描述、事件性动作进行抽象,可完成抽象知识,包括抽象实体,抽象动作,抽象事件。基于该知识图谱,可以进行不同层级的实体抽象和动作抽象,这与人类真实高度概括的认知是保持一致。

二、横向常识逻辑

横向上,需要挖掘顺承、因果、反转等多个方向的逻辑演化关系。例如,作者对横向常识逻辑,形成了以下工作:

4、顺承事件图谱项目:SequentialEventExtration.

以谓词性短语作为事件表示的方法方兴未艾,针对特定领域,构建起特定领域的顺承事件图谱,可以支持事件推理,基于事件的意图识别与推荐等多项运用。本项目基于50W文章领域语料,运用简单提取方式形成的顺承关系图谱demo,形成了事件节点为326781个, 顺承事件对为543580条,分别为30W和50W的图谱规模。

5、因果事件图谱项目:CausalityEventExtraction.

项目以构造和总结因果模板,结合中文语言特点,构建因果语言知识库的方式,对因果事件抽取以及因果知识图谱构建进行尝试。罗列出了9类显式因果逻辑抽取模式,通过使用因果连词库,结果词库、因果模式库等,完成因果抽取、对文本进行噪声移除,非关键信息去除等进行文本预处理;基于因果模式库,完成因果对抽取,选择短语、短句、句子主干等方式进行事件表示;使用知识图谱中的实体对齐技术进行事件融合,基于业务需求,可以用相应的数据库进行存储,比如图数据库等完成事件存储。

6、复合事件图谱项目:ComplexEventExtraction.

项目对中文复合事件抽取,包括条件事件、因果事件、顺承事件、反转事件等事件事件图谱的类型、表现形式进行了归纳,并结合复合事件模式与语料进行了实验。实验表明,反转事件,其实在某种程度上可以用来构造反义词词典,例如"不是A而是B"这种模式,可以得到很多反义的词或短语,可以用wordvector找相近词,可以靠这种方式收集反义词。汉语显示标记其实在中文文本当中还是用的很普遍,在1000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值