KerasSeq2seqGeneration:基于seq2seq模型的文本生成任务项目

该博客介绍了基于Keras的seq2seq模型在自动对诗任务上的应用。作者提供了项目背景、构成、思想和使用方法,并分享了项目链接和模型训练与预测的脚本。项目采用字符级别的lstm-encoder和lstm-decoder,旨在作为一个简单的入门级生成任务示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目的由来

1、分类、抽取、序列标注、生成任务是自然语言处理的四大经典任务,其中,分类、抽取任务,可以使用规则进行快速实现。而对于生成而言,则与统计深度学习关系较为密切。
2、当前,GPT系列,自动文本生成、文本图像生成,图像文本生成等魔幻主义大作频频上演。
3、目前开源的seq2seq模型项目晦涩难度,不利于阅读与入门。
受此三个现实背景,也正好在接触生成这个任务,特做此项目。

项目链接:
https://github.com/liuhuanyong/KerasSeq2seqGeneration

项目的构成

项目场景:该项目以自动对诗为使用场景,即用户给定上一句,要求模型给出下一句,是个较理想的生成例子。
项目代码结构:
data.txt:为训练数据,此处使用的是对联诗句数据
seq2seq_predict.py:使用seq2seq模型进行下一句生成的脚本
seq2seq_train.py:使用seq2seq模型进行生成的脚本
model/:
config.txt:预训练时形成的一些关键参数,如最大长度等,字数等。
input_vocab.pkl:输入语句的字符索引
output_vovab.pkl:输出语句的字符索引,此处将输入和输出进行区分成两个vocab,可以用于不同语种翻译等场景,如果不需要也可以合成一个。
s2s_model.h5:模型名称
image:
lstm_seq2seq_model.png:序列生成模型网路结构图

项目的思想:

采用character

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值