使用spark基于出租车GPS数据实现车辆数量统计以及北京每个城区的车辆位置点数分析
本文将介绍如何使用pyspark以及scala实现的spark分析出租车GPS数据,具体来说,我们将计算每个北京城区内的车辆位置点数,以及统计出租车的数量。我们将使用两个数据集:district.txt 包含北京各城区的中心坐标和半径,taxi_gps.txt 包含出租车的GPS位置数据。以下是数据文件的示例内容
1、数据解析
出租车GPS数据文件(taxi_gps.txt)
北京区域中心坐标及半径数据文件(district.txt)
2、需求分析
·能够输出以下统计信息
·A:该出租车GPS数据文件(taxi_gps.txt)包含多少量车?
·B:北京每个城区的车辆位置点数(每辆车有多个位置点,允许重复)
A输出:
·以第一列统计车辆数,去重·输出
B输出:
1.从(district.txt)文件中取第一个区的记录,获得其名称D、中心坐标M(xo,yo)和半径r;
2.从(taxi_gps.txt)中获取第一条位置点记录,获得其坐标N(xp,y)
3.利用欧几里得距离计算公式计算点M和N的距离dis,如果dis<r,则认为该位置记录属于区域D;得到<D¡,1>
4.继续从2开始循环,获得第二个位置记录;直至所有记录遍历完。·5.继续从1开始循环,获得第二个区的记录 district.txt
3、统计出租车的数量
接下来,我们统计出租车的数量。我们可以简单地读取taxi_gps.txt文件,然后使用countDistinct函数来统计不同车辆标识的数量。
python实现该功能的代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import countDistinct
# 创建一个SparkSession
spark = SparkSession.builder \
.getOrCreate()
# 读取出租车GPS数据
taxi_df = spark.read.csv("data/taxi_gps.txt", header=False, inferSchema=True)
# 计算唯一出租车的数量
num_taxis = taxi_df.select(countDistinct("_c0")).collect()[0][0]
# 输出结果
print("出租车的数量为:", num_taxis)
# 停止SparkSession
spark.stop()
scala实现该功能的代码
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.countDistinct
object CarCount{
def main(args: Array[String]): Unit = {
// 创建一个SparkSession
val spark = SparkSession.builder()
.appName("TaxiGPS"