tf.zeros_like

本文介绍TensorFlow中的tf.zeros_like函数,该函数用于创建一个与给定张量形状相同且所有元素均为零的新张量。文章详细解释了函数的参数设置及其使用方法,并通过示例展示了如何应用此函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.zeros_like

zeros_like(
    tensor,
    dtype=None,
    name=None,
    optimize=True
)

Defined in tensorflow/python/ops/array_ops.py.

See the guide: Constants, Sequences, and Random Values > Constant Value Tensors

Creates a tensor with all elements set to zero.

Given a single tensor (tensor), this operation returns a tensor of thesame type and shape as tensor with all elements set to zero. Optionally,you can use dtype to specify a new type for the returned tensor.

For example:

tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
tf.zeros_like(tensor)  # [[0, 0, 0], [0, 0, 0]]
Args:
  • tensor: A Tensor.
  • dtype: A type for the returned Tensor. Must be float32, float64, int8, uint8, int16, uint16, int32,int64,complex64,complex128orbool`.
  • name: A name for the operation (optional).
  • optimize: if true, attempt to statically determine the shape of 'tensor' and encode it as a constant.
Returns:

A Tensor with all elements set to zero.

代码检查 # 初始化模型和优化器 generator = make_generator_model() discriminator = make_discriminator_model() cross_entropy = tf.keras.losses.BinaryCrossentropy() generator_optimizer = tf.keras.optimizers.Adam(1e-4) discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) # 定义损失函数 def discriminator_loss(real_output, fake_output): real_loss = cross_entropy(tf.ones_like(real_output), real_output) fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) return real_loss + fake_loss def generator_loss(fake_output): return cross_entropy(tf.ones_like(fake_output), fake_output) # 训练步骤 @tf.function def train_step(images): noise = tf.random.normal([BATCH_SIZE, NOISE_DIM]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) gen_loss = generator_loss(fake_output) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) return gen_loss, disc_loss # 训练循环 def train(dataset, epochs): for epoch in range(epochs): for image_batch in dataset: gen_loss, disc_loss = train_step(image_batch) # 每5个epoch输出一次生成结果 if (epoch + 1) % 5 == 0: generate_and_save_images(generator, epoch + 1, tf.random.normal([16, NOISE_DIM])) print(f'Epoch {epoch+1}, Gen Loss: {gen_loss}, Disc Loss: {disc_loss}') # 生成示例图像 def generate_and_save_images(model, epoch, test_input): predictions = model(test_input, training=False) fig = plt.figure(figsize=(4,4)) for i in range(predictions.shape[0]): plt.subplot(4, 4, i+1) plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray') plt.axis('off') plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) plt.show() # 开始训练 train(train_dataset, EPOCHS)
03-14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值