七、基于OpenAI大模型开发——api调用


前言

前面文章介绍了关于大模型和Prompt工程的内容,从本篇文章开始,我们开始编码实战。API使用的是OpenAI的API,模型为gpt-3.5-turbo与gpt-4o-mini


一、为什么选择OpenAI

首先,OpenAI仍是最主流最成熟的大模型,他的革命式的出现率先定义了大模型的标准,其他大模型都在跟进他的步伐。对于OpenAI API来说,也是最成熟功能最全面的API,其他大模型的API跟其比较大同小异,学会了OpenAI API,对于其他大模型API也会很快上手。

二、准备工作

相关准备工作参考前面文章:三、LLM应用开发准备工作

本系列所有代码,API地址和API KEY都放在了.env文件,使用load_dotenv去读取,然后在代码中使用

在这里插入图片描述

三、Chat Completion API

OpenAI提供了Chat Completion API,其核心能力是其对话能力,根据提示(prompt)进⾏提示语句的补全(即继续进⾏后续⽂本创作)。
Chat模型的核⼼优势:理解⼈类意图的能⼒。理解⼈类意图带来的更低的交互⻔槛,同样也会为开发者带来巨⼤的便利。据OpenAI官⽹数据,⾃gpt-3.5 API发布以来,约97%的开发者更偏向于使⽤Chat模型API进⾏开发。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2024/7/15
# @Author : liangpp
# @Email : mobaicloud@163.com
# @Software : PyCharm
# 直接调用openAI

import os
from dotenv import load_dotenv
from openai import OpenAI

# 加载环境变量
load_dotenv()
WILDCARD_API_KEY = os.getenv('WILDCARD_API_KEY')
WILDCARD_API = os.getenv('WILDCARD_API')

# 初始化 OpenAI 客户端
client = OpenAI(api_key=WILDCARD_API_KEY, base_url=WILDCARD_API)

# 创建聊天对话 
completion = client.chat.completions.create(
    model="gpt-3.5-turbo", # 指定大模型
    
    # 定义对话的消息列表,每条消息由一个角色和内容组成。 
    messages=[
        {"role": "system", "content": "你是一位小丑"},
        {"role": "user", "content": "讲一个笑话"}
    ]
)

# 获取生成的第一个选择的消息内容。
print(completion.choices[0].message.content)

对话消息列表(messages)中的role分为三种:

  • system: 也就是前面提到的Prompt,用于设定对话的背景或指导模型的行为。它可以影响模型的整体风格和语气。一般我们定义对回答的要求,比如“你是一个资深的运维工程师”、“请使用温柔的语气来回答”等等。
  • user: 代表用户的输入,通常是用户向模型提出的问题或请求。
  • assistant: 通常代表模型的响应,后续会在与大模型多次交互时使用。

四、函数封装+流式输出

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2025/1/6
# @Author : liangpp
# @Email : mobaicloud@163.com
# @Software : PyCharm 2024


import os
from dotenv import load_dotenv
from openai import OpenAI

# 秘钥
load_dotenv()
WILDCARD_API_KEY = os.getenv('WILDCARD_API_KEY')
WILDCARD_API = os.getenv('WILDCARD_API')
client = OpenAI(api_key=WILDCARD_API_KEY, base_url=WILDCARD_API)


def stream_gpt3_5_response(prompt):
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "你是一位诗人"},
            {"role": "user", "content": "写一首诗来赞美AI。"}
        ],
        stream=True  # 流式输出
    )

    # Process and print the response as it streams
    for chunk in response:
        if hasattr(chunk, 'choices'):
            if len(chunk.choices) > 0:
                delta = chunk.choices[0].delta
                if hasattr(delta, 'content') and delta.content:
                    print(delta.content, end='', flush=True)


if __name__ == '__main__':
    prompt = "Write a poem to explain the concept of recursion in programming."
    stream_gpt3_5_response(prompt)
    # Print a blank line
    print()

在这里插入图片描述

五、官方资料

API:https://openai.com/api/
API Document:https://platform.openai.com/docs/overview

### 关于OpenAI大模型API调用结果不包含代码的原因 当通过OpenAI API请求返回的内容不符合预期,比如期望获取代码片段而实际未获得时,这可能是由于参数设置不当所致。具体来说,在发起`Completion.create()`或类似的创建补全请求时所指定的参数影响着最终输出的形式与内容[^3]。 对于想要得到特定类型的响应——例如Python代码片段而言,应当确保prompt设计得足够清晰明确,并且合理配置诸如`max_tokens`, `temperature`, 和`stop`这样的选项来引导更精确的回答方向。如果这些条件未能满足,则可能导致生成文本偏离预设目标而不含有任何编程语句[^1]。 另外一种可能性在于某些情况下即使提示词已经指明需求为编写一段程序逻辑,但由于模型本身的局限性或是训练数据集中缺乏足够的样本支持该类别的创作活动,也可能造成无法产出理想中的编码成果。不过这种情况相对少见,更多时候还是因为输入指令不够精准造成的偏差[^2]。 ### 解决方案示例 为了提高从OpenAI API接收到包含有效代码的概率,可以尝试调整如下几个方面: #### 设定更具指导性的Prompt 构建详细的上下文描述以及具体的任务要求能够帮助更好地指引模型理解用户的意图并据此作出回应。下面是一个改进后的例子: ```plaintext Write a Python function named 'calculate_area' that calculates the area of a circle given its radius as an argument. The formula to calculate the area is πr² where r represents the radius value provided by user input. Ensure your code includes proper comments explaining each step within the function body. ``` #### 配置合适的API参数 除了精心准备的提示外,适当调节其他可选参数同样有助于优化输出质量。这里给出一组推荐设定供参考: - **Max Tokens**: 控制最大允许产生的token数量;对于简单的函数定义可能只需要几十个tokens即可完成。 - **Temperature**: 设置较低温度(接近0),使得输出更加稳定和确定性高,适合用于需要严格遵循给定模式的任务场景下。 - **Top P (Nucleus Sampling)**: 可以考虑关闭此功能或将数值设得很低,从而减少随机成分的影响。 - **Stop Sequences**: 定义结束标志序列可以帮助限定输出范围,防止过长不必要的附加信息干扰主要部分的理解。 ```python import openai response = openai.Completion.create( engine="text-davinci-003", prompt=""" Write a Python function named 'calculate_area' that calculates the area of a circle given its radius as an argument. The formula to calculate the area is πr² where r represents the radius value provided by user input. Ensure your code includes proper comments explaining each step within the function body. """, temperature=0.2, max_tokens=150, top_p=1, frequency_penalty=0, presence_penalty=0, stop=["\n\n"] ) print(response.choices[0].text.strip()) ``` 上述代码展示了如何利用更为细致入微的方式向OpenAI API发出请求,以此增加成功接收所需格式化代码的可能性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

偷学技术的梁胖胖yo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值