二维前缀和_二维差分

一、前缀和

1. 前缀和

已知原数组A:a[1] .... a[n]

构造前缀和数组:s[1] .... s[n]

初始化前缀和数组:s[i] = s[i-1] + a[i] (i从1开始)

使用:计算a[l]~a[r]之间的和

sum = s[r] - s[l-1]

2.二维前缀和

请添加图片描述

问题一:如何初始化前缀和数组?(见图中红框)

s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + a[i][j]

使用

问题二:如何求以(x1,y1)为左顶点,(x2,y2)为右顶点的内部子矩阵数的和?

sum = s[x2][y2] - s[x2][y1-1] - s[x1-1][y2] + s[x1-1][y1-1]

二、差分

1.差分

已知原数组A:a[1] .... a[n]

构造差分数组b[1] .... b[n]

使得 a[i] = b[1] + b[2] + .... + b[i]

使用:a[l]~a[r] 都 +c

插入操作

b[l] += c;
b[r+1] -= c;

请添加图片描述

注: 可将a数组看作全为0的数组,对其进行构造即为a[i] = 在 (i,i) 区间内 + a[i],这个过程中可以初始化差分数组b。

例题

请添加图片描述

#include <iostream>

using namespace std;

const int N = 100010;

int a[N],b[N];

//核心操作:插入
void insert(int l, int r, int c)
{
    b[l] += c;
    b[r+1] -= c;
}

int main()
{
    int n,m;
    cin >> n >> m;
    for(int i = 1; i <= n; i++)
    {
        cin >> a[i];
        insert(i,i,a[i]);	//构造出差分数组
    }
    //完成插入操作
    while(m--)
    {
        int l,r,c;
        cin >> l >> r >> c;
        insert(l,r,c);
    }
    
    for(int i = 1; i <= n; i++)
    {
        //插入后对已经改变的差分数组求前缀和即可
        a[i] = a[i-1] + b[i];
        cout << a[i] << " ";
    }
    
    return 0;
}

2.二维差分

已知a数组,构造b数组,使得a是b的二维前缀和,即b为a的二维差分数组

请添加图片描述

使用

(x1,y1)为左顶点,(x2,y2)为右顶点的内部子矩阵的每个数 + c

对于差分数组

b[x1][y1] += c;
b[x1][y2+1] -= c;
b[x2+1][y1] -= c;
b[x2+1][y2+1] += c;

注: 可将a数组看作全为0的数组,对其进行构造即为a[i][j] = (i,j)到(i,j) + a[i][j],这个过程中可以初始化差分数组b。

例题

请添加图片描述

#include <iostream>
using namespace std;

const int N = 1010;

int a[N][N],b[N][N];

void insert(int x1, int y1, int x2, int y2, int c)
{
    b[x1][y1] += c;
    b[x1][y2+1] -= c;
    b[x2+1][y1] -= c;
    b[x2+1][y2+1] += c;
}

int main()
{
    int n,m,q;
    cin >> n >> m >> q;
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
        {
            cin >> a[i][j];
            insert(i,j,i,j,a[i][j]);	//构造出b数组
        }
    while(q--)
    {
        int x1, y1, x2, y2, c;
        cin >> x1 >> y1 >> x2 >> y2 >> c;
        insert(x1,y1,x2,y2,c);
    }
    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= m; j++)
        {
            a[i][j] = a[i-1][j] + a[i][j-1] - a[i-1][j-1] + b[i][j];	//求前缀和
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
    
    return 0;
}
### 三维前缀和二维差分的基础概念 #### 一、二维前缀和 二维前缀和是一种用于快速查询矩阵子区域和的技术。对于给定的一个二维 `matrix`,其大小为 `m x n`,可以通过预处理的方式构建一个二维前缀和 `prefix_sum`。 - **定义**: 前缀和中的每一个位置 `(i, j)` 表示的是从左上角 `(0, 0)` 到当前坐标 `(i, j)` 的矩形区域内所有元素的总和。 \[ \text{prefix\_sum}[i][j] = \sum_{p=0}^{i}\sum_{q=0}^{j} matrix[p][q] \] 通过动态规划的思想来计算该数: ```python def build_prefix_sum(matrix): m, n = len(matrix), len(matrix[0]) if matrix else 0 prefix_sum = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): prefix_sum[i][j] = ( matrix[i - 1][j - 1] + prefix_sum[i - 1][j] + prefix_sum[i][j - 1] - prefix_sum[i - 1][j - 1] ) return prefix_sum ``` 利用这个前缀和,我们可以高效地计算任意子矩阵的和。假设要查询以 `(r1, c1)` 和 `(r2, c2)` 定义的子矩阵,则有如下关系[^2]: \[ \text{subarray sum} = \text{prefix\_sum}[r2+1][c2+1] - \text{prefix\_sum}[r1][c2+1] - \text{prefix\_sum}[r2+1][c1] + \text{prefix\_sum}[r1][c1] \] --- #### 二、二维差分 二维差分是对二维前缀和的一种逆操作,主要用于对某些区间内的值进行批量修改后再求解最终状态下的矩阵。 - **定义**: 差分记录了原始数中相邻两个数之间的异,在二维情况下扩展到行列方向上的变化量。 具体来说,如果希望将某个范围 `[x1,y1,x2,y2]` 中的所有数值增加 v ,则只需调整四个边界点即可完成整个区域的影响传播: ```python def apply_difference(diff_matrix, x1, y1, x2, y2, value): diff_matrix[x1][y1] += value if y2 + 1 < len(diff_matrix[0]): diff_matrix[x1][y2 + 1] -= value if x2 + 1 < len(diff_matrix): diff_matrix[x2 + 1][y1] -= value if x2 + 1 < len(diff_matrix) and y2 + 1 < len(diff_matrix[0]): diff_matrix[x2 + 1][y2 + 1] += value ``` 最后通过对上述差分矩阵执行一次逐行累积再逐列累积的操作恢复出更新后的实际矩阵[^1]: ```python def recover_from_diff(diff_matrix): m, n = len(diff_matrix), len(diff_matrix[0]) result = [] current_row = [] for i in range(m): new_row = [diff_matrix[i][0]] for j in range(1,n): new_value = new_row[-1]+diff_matrix[i][j] new_row.append(new_value) if not result: result=new_row[:] else: for k in range(n): result[k]+=new_row[k] return result ``` 以上即为二维前缀和二维差分的核心原理及其简单实现方式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值