1. 什么是 DeepSeek R1?
a. 主要介绍
DeepSeek介绍:
-
公司背景:DeepSeek是一家专注于通用人工智能的中国科技公司,主攻大模型研发与应用。
-
DeepSeek-R1:其开源的推理模型,擅长处理复杂任务且可免费商用,性能在数学、代码、自然语言推理等任务上与OpenAI o1正式版相当。
-
其主要亮点包括:
-
- 完全开源,可自由使用;
- 支持本地运行,无需依赖云服务器;
- 数据完全可控,确保隐私安全。
a. 版本区别
根据官方信息DeepSeek R1 可以看到提供多个版本,包括完整版(671B 参数)和蒸馏版(1.5B 到 70B 参数)。
- 完整版性能强大,但需要极高的硬件配置;
- 蒸馏版则更适合普通用户,硬件要求较低
DeepSeek-R1官方地址:https://github.com/deepseek-ai/DeepSeek-R1
- 完整版(671B):需要至少 350GB 显存/内存,适合专业服务器部署
- 蒸馏版:基于开源模型(如 QWEN 和 LLAMA)微调,参数量从 1.5B 到 70B 不等,适合本地硬件部署。
蒸馏版与完整版的区别:
维度 | 完整版 | 蒸馏版 |
---|---|---|
参数量 | 参数量较大(671B),性能最强。 | 参数量较少(如 1.5B、7B),性能接近完整版但略有下降。 |
硬件需求 | 至少 350GB 显存/内存,需高端硬件支持。 | 至少 4GB 显存/内存,适合低配硬件。 |
适用场景 | 适合高精度任务和专业场景。 | 适合轻量级任务和资源有限的设备。 |
接下来详细看下蒸馏版模型的特点:
模型版本 | 参数量 | 特点 |
---|---|---|
deepseek-r1:1.5b | 1.5B | 轻量级模型,适合低配硬件,性能有限但运行速度快 |
deepseek-r1:7b | 7B | 平衡型模型,适合大多数任务,性能较好且硬件需求适中 |
deepseek-r1:8b | 8B | 略高于 7B 模型,性能稍强,适合需要更高精度的场景 |
deepseek-r1:14b | 14B | 高性能模型,适合复杂任务(如数字推理、代码生成),硬件需求较高 |
deepseek-r1:32b | 32B | 专业级模型,性能强大,适合研究和高精度任务,需高端硬件支持 |
deepseek-r1:70b | 70B | 顶级模型,性能最强,适合大规模计算和高复杂度任务,需专业级硬件支持 |
进一步的模型细分还分为量化版:
模型版本 | 参数量 | 特点 |
---|---|---|
deepseek-r1:1.5b-quen-distill-q4_K_M | 1.5B | 轻量级模型,适合低配硬件,性能有限但运行速度快,使用了4-bit量化,模型精度下降 |
deepseek-r1:7b-quen-distill-q4_K_M | 7B | 平衡型模型,适合大多数任务,性能较好且硬件需求适中,使用了4-bit量化,模型精度下降 |
deepseek-r1:8b-llana-distill-q4_K_M | 8B | 略高于7B模型,性能稍强,适合需要更高精度的场景,使用了4-bit量化,模型精度下降 |
deepseek-r1:14b-quen-distill-q4_K_M | 14B | 高性能模型,适合复杂任务(如数字推理、代码生成),硬件需求较高,使用了4-bit量化,模型精度下降 |
deepseek-r1:32b-quen-distill-q4_K_M | 32B | 专业级模型,性能强大,适合研究和高精度任务,需高端硬件支持,使用了4-bit量化,模型精度下降 |
deepseek-r1:76b-llana-distill-q4_K_M | 70B | 顶级模型,性能最强,适合大规模计算和高复杂度任务,需专业级硬件支持,使用了4-bit量化,模型精度下降 |
最后我们了解下,蒸馏版与量化版的区别:
维度 | 特点 |
---|---|
蒸馏版 | 基于大模型(如 QWEN 或 LLAMA)微调,参数量减少但性能接近原版,适合低配硬件。 |
量化版 | 使用 4-bit/8-bit 量化可大幅降低显存需求(如bitsandbytes[6]),适合资源有限的设备。 |
例如:
- deepseek-r1:7b-qwen-distill-q4_K_M:7B 模型的蒸馏+量化版本,显存需求从 5GB 降至 3GB。
- deepseek-r1:32b-qwen-distill-q4_K_M:32B 模型的蒸馏+量化版本,显存需求从 22GB 降至 16GB 我们正常本地部署使用蒸馏版就可以
2. 部署资源要求
a. 硬件资源要求
不同操作系统基础环境:
-
Windows:
-
- 依赖 CUDA 和 NVIDIA 驱动,推荐使用 RTX 30/40 系列。
- 大模型(14B+)需借助量化或模型分片技术。
-
macOS:
-
- 仅限 Apple Silicon 芯片(M1/M2/M3),依赖 Metal 加速。
- 模型规模超过 14B 时性能显著下降,建议量化或云端部署。
-
Linux:
-
- 支持多 GPU 扩展和高效资源管理(如 NVIDIA Docker)。
- 适合部署大型模型(14B+),需专业级硬件。
-
硬件配置: 可根据下表配置选择使用自己的模型
模型名称 | 参数量 | 模型大小 | 显存/内存 |
---|---|---|---|
deepseek-r1:1.5b | 1.5B | 1.1 GB | ~2 GB |
deepseek-r1:7b | 7B | 4.7 GB | ~5 GB |
deepseek-r1:8b | 8B | 4.9 GB | ~6 GB |
deepseek-r1:14b | 14B | 9.0 GB | ~10 GB |
deepseek-r1:32b | 32B | 20 GB | ~22 GB |
deepseek-r1:70b | 70B | 43 GB | ~45 GB |
deepseek-r1:1.5b-qwen-distill-q4_K_M | 1.5B | 1.1 GB | ~2 GB |
deepseek-r1:7b-qwen-distill-q4_K_M | 7B | 4.7 GB | ~5 GB |
deepseek-r1:8b-llama-distill-q4_K_M | 8B | 4.9 GB | ~6 GB |
deepseek-r1:14b-qwen-distill-q4_K_M | 14B | 9.0 GB | ~10 GB |
deepseek-r1:32b-qwen-distill-q4_K_M | 32B | 20 GB | ~22 GB |
deepseek-r1:70b-llama-distill-q4_K_M | 70B | 43 GB | ~45 GB |
3. 本地安装DeepSeek-R1
a. 为什么选择本地部署?
本地运行 AI 模型有以下优势:
- 隐私保障:保证数据‘不出域’,所有数据均存储在本地,避免敏感信息泄露。
- 零额外成本:DeepSeek R1 免费运行,无需订阅或额外费用。
- 完全控制:可以进行微调和本地优化,无需外部依赖。
b. 部署工具对比
部署可以使用Ollama、LM Studio、KubeML 、Docker等工具进行部署。
-
Ollama:
-
- 支持 Windows、Linux 和 Mac 系统,提供命令行和 Docker 部署方式,安装只能默认到C盘
- 使用命令
ollama run deepseek-r1:7b
下载并运行模型 - 本地大模型管理框架,Ollama 让用户能够在本地环境中高效地部署和使用语言模型,而无需依赖云服务。
-
LM Studio:
-
- 支持 Windows 和 Mac,提供可视化界面,适合新手用户
- 部署方式:桌面应用程序(GUI)
- 核心功能:零配置可视化界面,支持直接加载 HuggingFace 模型库、CPU+GPU 混合推理优化,适配低配硬件(如消费级显卡)、本地模型实验沙盒,无服务化部署能力。
-
Docker:
-
- 支持系统:Linux、Windows(需 Docker Desktop)。
- 部署方式:容器化部署(单机)
- 使用命令
docker run -d --gpus=all -p 11434:11434 --name ollama ollama/ollama
启动容器。 - 核心功能:环境隔离性强,依赖项封装为镜像,需配合 Docker Compose/Swarm 实现多机编排。
-
KubeML:
-
- 支持系统:依赖 Kubernetes 集群(跨平台)
- 部署方式:Kubernetes 原生扩展
- 生产级特性:基于 Kubernetes 的自动扩缩容(HPA/VPA 集成)、分布式训练框架支持(PyTorch/TensorFlow 多节点调度)、资源配额监控与 GPU 共享策略。
根据工具特性对比表格如下:
工具 | 优势 | 局限 | 适用场景 |
---|---|---|---|
Ollama | 单节点快速部署,轻量化启动 | 缺乏集群管理能力,仅支持单机运行 | 开发测试环境/个人实验 |
KubeML | 支持K8s自动扩缩容,生产级资源调度 | 需K8s基础,学习曲线陡峭 | 大规模生产环境/分布式训练 |
Docker | 配置即代码,环境隔离性强 | 多机编排需Compose/Swarm配合 | 中小型生产环境/容器化部署 |
LM Studio | 零配置可视化界面,本地模型快速实验 | 仅限本地单机,无服务化部署能力 | 个人开发者原型验证/模型效果测试 |
补充说明:
-
LM Studio
-
- 核心价值:专注于本地化模型实验,提供开箱即用的GUI界面,支持直接加载HuggingFace模型
- 典型用例:研究人员快速验证模型效果,无需编写部署代码
- 进阶限制:无法导出为API服务,缺乏用户权限管理等生产级功能
-
横向对比维度
-
- 扩展性:KubeML > Docker > Ollama > LM Studio
- 易用性:LM Studio > Ollama > Docker > KubeML
- 生产就绪:KubeML > Docker > Ollama(LM Studio不适合生产)
-
混合部署建议
-
- 开发阶段:用LM Studio/Ollama快速验证模型
- 测试阶段:通过Docker构建原型API
- 生产阶段:使用KubeML实现弹性伸缩,配合Prometheus监控
c. 演示环境配置
我这里的演示的本地环境:
-
操作系统:
-
- 系统版本:Windows 11 企业版
-
CPU规格
-
- CPU型号:Intel® Core™ i9-10900X CPU @ 3.70GHz 3.70 GHz
- CPU核数:20 核
-
内存规格:
-
- 内存:64.0 GB
-
存储规格:
-
- 型号:Samsung SSD 970 EVO Plus 2TB
- 容量:2TB
- 类型:固态硬盘(SSD),NVMe SSD
-
显卡规格:
-
- 显卡型号:NVIDIA RTX 4090
- 显存大小:24GB
- 显卡驱动:32.0.15.6094 (NVIDIA 560.94) DCH / Win11 64
- 显卡计算技术:OpenCL, CUDA, DirectCompute, DirectML, Vulkan, Ray Tracing, PhysX, OpenGL 4.6
系统配置截图:显卡参数截图:
因为我的需求主要开发/测试,所有我最终选择使用Ollama安装,关于如何选择合适的模型版本以及配置相应的硬件资源参考以下:
-
选择模型版本:
-
- 跟我们电脑硬件的,最终选择DeepSeek-R1模型蒸馏版32B的版本。
-
通用配置原则:
-
- 例如,32B模型在FP16下需约48-64GB显存,量化后可能降至24-32GB。
-
- 模型显存占用:每1B参数约需1.5-2GB显存(FP16精度)或0.75-1GB显存(INT8/4-bit量化)。
- 内存需求:至少为模型大小的2倍(用于加载和计算缓冲)。
- 存储:建议使用NVMe SSD,模型文件大小从1.5B(约64GB)不等。
总之根据自己实际情况,选择模型版本和配置硬件资源,以确保模型能够顺利运行。
d. Ollama安装流程
官方地址:https://ollama.com/
步骤1:下载Ollama服务安装包
步骤2:安装Ollama服务控制台验证是否成功安装?
步骤3:选择并安装模型
我们再回到Ollama官网选择模型,选择适合你的蒸馏量化模型复制命令进行安装
ollama run deepseek-r1:32b
步骤4:加载模型
ollama run deepseek-r1:32b
可以看到安装完成:
输入指令测试下:
步骤5:配置远程Ollama服务(可选)
默认情况下,Ollama 服务仅在本地运行,不对外提供服务。要使 Ollama 服务能够对外提供服务,你需要设置以下两个环境变量:
OLLAMA_HOST=0.0.0.0
OLLAMA_ORIGINS=*
在 Windows 上,Ollama 会继承你的用户和系统环境变量。
-
通过任务栏退出 Ollama。
-
打开设置(Windows 11)或控制面板(Windows 10),并搜索“环境变量”。
-
点击编辑你账户的环境变量。
-
- 为你的用户账户编辑或创建新的变量
OLLAMA_HOST
,值为 0.0.0.0; 为你的用户账户编辑或创建新的变量OLLAMA_ORIGINS
,值为 *。
- 为你的用户账户编辑或创建新的变量
-
点击确定/应用以保存设置。
-
从 Windows 开始菜单启动 Ollama 应用程序。
其它系统请参考:https://chatboxai.app/zh/help-center/connect-chatbox-remote-ollama-service-guide
注意事项:
- 可能需要在防火墙中允许 Ollama 服务的端口(默认为 11434),具体取决于你的操作系统和网络环境。
- 为避免安全风险,请不要将 Ollama 服务暴露在公共网络中。办公网络是一个相对安全的环境。
步骤6:验证部署
返回HTTP 200即为成功
curl http://远程IP:11434/api/status
步骤7:ollama相关命令
# 查看已安装模型:
ollama list
# 删除已安装的模型(模型名称替换你自己的):
ollama rm deepseek-r1:32
4. 可视化工具
为了获得更好的交互体验,可以安装可视化工具使用。
a. 工具对比
这里介绍下Open-WebUI、Dify、Chatbox
1. Open-WebUI****定位:轻量级自托管LLM交互界面
核心功能:
- 提供简洁的Web UI与大模型交互,支持本地或云端部署的LLM(如Llama、GPT等)。
- 支持会话标签管理,便于多任务切换和历史记录追溯。
- 集成80+插件生态,可扩展文件解析、知识库检索等功能。
- 低延迟(≤50ms),适合个人用户快速调用本地模型。
适用场景:
- 个人开发者或研究者本地调试大模型。
- 需要轻量化、高定制化UI的LLM交互场景。
局限性:
- 无API接口,无法直接集成到企业级应用中。
- 功能聚焦于交互界面,缺乏应用开发支持。
2. Dify****定位:企业级LLM应用开发平台
核心功能:
- 提供可视化工作流编排,支持RAG、AI Agent等复杂应用开发。
- 内置API服务,便于集成到现有系统(如客服、数据分析工具)。
- 支持MongoDB/PostgreSQL存储,管理对话日志、知识库等结构化数据。
- 提供企业级权限管理、数据审计和监控功能。
适用场景:
- 开发智能客服、知识库问答等AI SaaS服务。
- 企业需要快速构建可扩展的LLM应用并集成API。
对比同类工具:
- 与AnythingLLM相比,Dify更强调开发灵活性,适合复杂业务逻辑;而AnythingLLM偏向开箱即用的知识库管理。
3. Chatbox****定位:跨平台桌面客户端工具
核心功能:
- 极低延迟(≤30ms),支持主流模型(GPT/Claude/文心一言等)快速调用。
- 对话流程编排功能,可预设提示词模板、多轮对话逻辑。
- 内置20+实用插件(如代码高亮、Markdown渲染、数据导出)。
- 一键安装,跨平台支持(Windows/macOS/Linux),部署复杂度极低(★☆☆☆☆)。
特色优势:
- 开发者友好:支持调试模式、请求日志追踪和快捷键操作。
- 轻量化:客户端无需服务器资源,适合本地开发测试。
适用场景:
- 开发者调试模型API或设计对话流程。
- 个人用户需要轻量、高效的桌面端LLM工具。
对比总结
维度 | Open-WebUI | Dify | Chatbox |
---|---|---|---|
核心定位 | 自托管交互界面 | LLM应用开发平台 | 跨平台客户端工具 |
API支持 | ❌ 无 | ✅ 提供完整API | ❌ 无(纯客户端) |
部署难度 | 中等(需配置环境) | 较高(依赖数据库) | 极低(开箱即用) |
适用场景 | 个人本地模型交互 | 企业级应用开发 | 开发者调试/轻量使用 |
生态扩展 | 80+插件 | 企业级功能模块 | 20+效率插件 |
选择建议:
- 个人用户本地调试选 Open-WebUI;
- 企业构建AI应用选 Dify;
- 开发者需要轻量调试工具选 Chatbox。
因为我们主要是个人使用,这里选择Open-WebUI。
b. Open-WebUI部署
Open-WebUI官方地址:https://github.com/open-webui/open-webuiOpen-WebUI官方文档地址:https://docs.openwebui.com/getting-started/
根据官网文档可使用pip和docker进行安装,我这里避免影响本地环境使用docker进行安装:
docker run \
-d \
--name open-webui \
--restart always \
-p 3000:8080 \
-e OLLAMA_BASE_URL=http://192.168.3.60:11434 \
-v open-webui:/app/backend/data \
ghcr.io/open-webui/open-webui:main
注意:设置环境变量 OLLAMA_BASE_URL,指向运行 Ollama 的服务器地址和端口。
服务启动成功如下:
访问http://localhost:3000/创建管理员账号
简单的测试下
5. AI API应用
这里列出了可以调用Ollama服务的很多类库:https://github.com/ollama/ollama。
a. Python SDK实战
先安装模块:
pip install ollama
用VS Code编写代码如下:
from ollama import Client
client = Client(
host='http://192.168.3.60:11434',
headers={'x-some-header': 'some-value'}
)
response = client.chat(model='deepseek-r1:32b', messages=[
{
'role': 'user',
'content': '你是谁?',
},
])
print(response)
执行结果:
c. Spring AI集成
我们可以通过Spring Boot与Spring AI来调用DeepSeek-R1模型,并实现API服务。Spring Boot提供了丰富的功能,能够轻松与Ollama结合,处理来自客户端的请求,并返回模型的推理结果。
步骤1:构建 Spring Boot 项目 首先,使用Spring Initializr创建一个Spring Boot项目,并添加Spring AI依赖。确保在pom.xml中包含以下依赖项:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
</dependency>
步骤2: 配置 Ollama
spring.ai.ollama.base-url=http://192.168.3.60:11434
spring.ai.ollama.chat.model=deepseek-r1:32b
步骤3:编写代码调用模型
@Bean
@SpringBootTest(classes = DemoApplication.class)
public class TestOllama {
@Autowired
private OllamaChatModel ollamaChatModel;
@Test
public void testChatModel() {
String prompt = "请将以下英文翻译成中文:";
String message = "Ollama now supports tool calling with popular models such as Llama 3.1.";
String result = ollamaChatModel.call(prompt + " " + message);
System.out.println(result);
}
}
行以上代码,Spring Boot会向Ollama发送请求,并返回DeepSeek-R1生成的翻译结果。如下:
6. 小结
本文实现从基础部署到业务集成的全链路实践:
- 版本选择:根据需求与硬件预算选择蒸馏版/完整版;
- 部署模式:Ollama适合快速验证,KubeML满足生产需求;
- 生态整合:通过标准化API实现与现有系统的无缝对接。
后续建议:
- 结合搜索库实现数据或日志分析自动化
- 使用构建个人知识问答系统
关于AI大模型技术储备
学好 AI大模型 不论是就业还是在工作技能提升上都不错,但要学会 AI大模型 还是要有一个学习规划。最后大家分享一份全套的 AI大模型 学习资料,给那些想学习 AI大模型 的小伙伴们一点帮助!
感兴趣的小伙伴,赠送全套AI大模型学习资料和安装工具,包含Agent行业报告、精品AI大模型学习书籍手册、视频教程、最新实战学习等录播视频,具体看下方。
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
