
OCR_detection
文章平均质量分 95
以实战为线索,逐步深入OCR文本检测识别研发各个环节,掌握思路,打造完整的工作流,提升工程化编码能力和思维能力。
libo-coder
DeepLearning / Computer Vision / OCR
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
『OCR_detection』PSENet
文章目录前言一、网络结构二、后处理算法(渐进式扩展算法)三、标签的生成四、损失函数 loss五、OHEM 算法的思想六、训练自己的数据集6.1 数据准备6.2 数据增强6.3 pse_general 参数设置6.4 issue前言论文: Shape Robust Text Detection with Progressive Scale Expansion Network代码: https://github.com/whai362/PSENet自然场景的文本检测是当前深度学习的重要应...原创 2021-01-24 17:00:47 · 1592 阅读 · 3 评论 -
『OCR_detection』Seglink
文章目录前言一、网络结构1.1 segment 检测1.2 link 检测1.3 合并算法二、网络 idea三、评价参考文献前言论文: Detecting Oriented Text in Natural Images by Linking Segments代码: https://github.com/bgshih/seglink先来说说文本检测存在的难点:1.文本行边界框的宽高比范围太广;2.语言格式的不统一(如中文文本行没有间隔,英文文本行有间隔);3.文本行的方向任意.针对上述存在的.原创 2021-01-15 15:20:21 · 364 阅读 · 0 评论 -
『OCR_detection』EAST
文章目录前言一、网络结构1.2 特征提取层:1.2 特征融合层:1.3 网络输出层:二、网络 idea三、网络 loss3.1 分数图损失(Loss for Score Map)3.2 几何形状损失(geometry loss)3.2.1 RBOX loss3.2.2 四边形框损失(QUAD loss)四、评价五、优化参考链接前言论文: EAST: An Efficient and Accurate Scene Text Detector代码: https://github.com/argman..原创 2021-01-06 13:28:19 · 635 阅读 · 0 评论 -
『OCR_detection』CRAFT
文章目录一、CRAFT 思路二、CRAFT 网络结构2.1 backbone论文名称: Character Region Awareness for Text Detection开源代码: https://github.com/clovaai/CRAFT-pytorch一、CRAFT 思路图像分割的思想, 采用 u-net 结构, 先下采样再上采样;利用分割的方法,与图像分割有些不同的是,CRAFT 不是对整个图像进行像素级分类,而是做了回归,它有两个分支,一个是目标是字符的中心的概率(这原创 2020-12-25 13:36:31 · 838 阅读 · 1 评论 -
『OCR_detection』CTPN
1. CTPN(基于连接预选框网络的文本检测)基本思路:既然宽度是可变、不确定的,那么就按照固定的高度进行检测,看看图像中有哪些区域是连续出现了一片同样高度特征的区域,并且其边缘符合文字的特点,就将其圈出来。该模型主要是对图片中的文本行进行准确定位,其基本做法是直接在卷积获得的 feature map(特征图)上生成的一系列适当尺寸的文本 proposals(预选框)进行文本行的检测。2. 网络结构CTPN模型利用了 RNN 和 CNN 的无缝结合来提高检测精度。其中,CNN用来提取深度特征,RNN原创 2020-07-18 17:03:03 · 1171 阅读 · 0 评论