tensorflow 实战笔记

#encoding:utf8
#一个去躁自编码器
#来源:tensorflow实战4.2 P65


import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data


#实现Xaiver初始化器
#让权重变得不大不小,0均值,方差为2/n_in+n_out)的均匀分布或者高斯分布
def xavier_init(fan_in,fan_out,constant=1):
    low=-constant*np.sqrt(6.0/(fan_in+fan_out))
    high=constant*np.sqrt(6.0/(fan_in+fan_out))
    return tf.random_uniform((fan_in,fan_out),minval=low,maxval=high,dtype=tf.float32)


class AdditiveGaussianNoiseAutocoder(object):
    #n_input:输入变量数;n_hidden:隐含层节点数;transfer_function:隐含层激活函数(默认为softplus);optimizer:优化器(默认为Adam    #scale:高斯噪声系数(默认为0.1
    def __init__(self,n_input,n_hidden,transfer_function=tf.nn.softplus,optimizer=tf.train.AdamOptimizer(),scale=0.1):
        self.n_input=n_input
        self.n_hidden=n_hidden
        self.transfer=transfer_function
        self.scale=tf.placeholder(tf.float32)
        self.training_scale=scale
        network_weights=self._initialize_weights()
        self.weights=network_weights
        #自编码的网络结构,input-->hiddeen-->recontrunction
        self.x=tf.placeholder(tf.float32,[None,self.n_input])
        self.hidden=self.transfer(tf.add(tf.matmul(self.x+scale*tf.random_normal((n_input,)),
                                                   self.weights['w1']),self.weights['b1']))
        self.reconstrunction=tf.add(tf.matmul(self.hidden,self.weights['w2']),
                                    self.weights['b2'])
        #定义损失函数为SE,并用Class中定义的优化器优化
        self.cost=0.5*tf.reduce_sum(tf.pow(tf.subtract(self.reconstrunction,self.x),
                                           2.0))
        self.optimizer=optimizer.minimize(self.cost)
        init=tf.global_variables_initializer()
        self.sess=tf.Session()
        self.sess.run(init)
    #定义weights  biases 并存入字典

    def _initialize_weights(self):
        all_weights=dict()
        all_weights['w1']=tf.Variable(xavier_init(self.n_input,self.n_hidden))
        all_weights['b1']=tf.Variable(tf.zeros([self.n_hidden],dtype=tf.float32))
        all_weights['w2']=tf.Variable(tf.zeros([self.n_hidden,self.n_input]))
        all_weights['b2']=tf.Variable(tf.zeros([self.n_input],dtype=tf.float32))
        return all_weights
    #只让Session执行两个计算图节点:cost和训练过程的optimizer
    #partial_fit的功能:用一个batch数据进行训练并返回当前的损失
    def partial_fit(self,X):
        cost,opt=self.sess.run((self.cost,self.optimizer),
                               feed_dict={self.x:X,self.scale:self.training_scale})
        return cost
    #自编码器训练完毕后,在测试集上对模型性能进行测评时计算cost
    #不会触发训练操作
    def calc_total_cost(self,X):
        return self.sess.run(self.cost,feed_dict={self.x:X,self.scale:self.training_scale})
    #提供一个接口获取抽象后的特征
    def transform(self,X):
        return self.sess.run(self.hidden,feed_dict={self.x:X,self.scale:self.training_scale})
    #高阶特征复原为原始数据
    def generate(self,hidden=None):
        if hidden is None:
            hidden=np.random.normal(size=self.weights['b1'])
        return self.sess.run(self.reconstrunction,
                             feed_dict={self.hidden:hidden})
    #综合了transformgenerate
    def reconstruct(self,X):
        return self.sess.run(self.reconstrunction,feed_dict={self.x:X,self.scale:self.training_scale})

    def getWeights(self):
        return self.sess.run(self.weights['w1'])

    def getBiases(self):
        return self.sess.run(self.weights['b1'])

mnist=input_data.read_data_sets('MNIST_data',one_hot=True)

def standard_scale(X_train,X_test):
    preprocessor=prep.StandardScaler().fit(X_train)
    X_train=preprocessor.transform(X_train)
    X_test=preprocessor.transform(X_test)
    return X_train,X_test
#随机获取block数据的函数(不放回抽样)
def get_random_block_from_data(data,batch_size):
    start_index=np.random.randint(0,len(data)-batch_size)
    return data[start_index:(start_index+batch_size)]

X_train,X_test=standard_scale(mnist.train.images,mnist.test.images)
n_samples=int(mnist.train.num_examples)
training_epochs=20
batch_size=128
display_step=1

#创建AGN编码器
autoencoder=AdditiveGaussianNoiseAutocoder(n_input=784,n_hidden=300,transfer_function=tf.nn.softplus,
                                           optimizer=tf.train.AdamOptimizer(learning_rate=0.001),scale=0.01)

for epoch in range(training_epochs):
    avg_cost=0
    total_batch=int(n_samples/batch_size)
    for i in range(total_batch):
        batch_xs=get_random_block_from_data(X_train,batch_size)
        cost=autoencoder.partial_fit(batch_xs)
        avg_cost+=cost/n_samples*batch_size

    if epoch%display_step==0:
        print 'Epoch:', '%04d'%(epoch+1),'cost=','{:.9f}'.format(avg_cost)

print 'Total cost:'+str(autoencoder.calc_total_cost(X_test))








                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值