#encoding:utf8 #一个去躁自编码器 #来源:tensorflow实战4.2 P65 import numpy as np import sklearn.preprocessing as prep import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #实现Xaiver初始化器 #让权重变得不大不小,0均值,方差为2/(n_in+n_out)的均匀分布或者高斯分布 def xavier_init(fan_in,fan_out,constant=1): low=-constant*np.sqrt(6.0/(fan_in+fan_out)) high=constant*np.sqrt(6.0/(fan_in+fan_out)) return tf.random_uniform((fan_in,fan_out),minval=low,maxval=high,dtype=tf.float32) class AdditiveGaussianNoiseAutocoder(object): #n_input:输入变量数;n_hidden:隐含层节点数;transfer_function:隐含层激活函数(默认为softplus);optimizer:优化器(默认为Adam) #scale:高斯噪声系数(默认为0.1) def __init__(self,n_input,n_hidden,transfer_function=tf.nn.softplus,optimizer=tf.train.AdamOptimizer(),scale=0.1): self.n_input=n_input self.n_hidden=n_hidden self.transfer=transfer_function self.scale=tf.placeholder(tf.float32) self.training_scale=scale network_weights=self._initialize_weights() self.weights=network_weights #自编码的网络结构,input-->hiddeen-->recontrunction self.x=tf.placeholder(tf.float32,[None,self.n_input]) self.hidden=self.transfer(tf.add(tf.matmul(self.x+scale*tf.random_normal((n_input,)), self.weights['w1']),self.weights['b1'])) self.reconstrunction=tf.add(tf.matmul(self.hidden,self.weights['w2']), self.weights['b2']) #定义损失函数为SE,并用Class中定义的优化器优化 self.cost=0.5*tf.reduce_sum(tf.pow(tf.subtract(self.reconstrunction,self.x), 2.0)) self.optimizer=optimizer.minimize(self.cost) init=tf.global_variables_initializer() self.sess=tf.Session() self.sess.run(init) #定义weights 和 biases 并存入字典 def _initialize_weights(self): all_weights=dict() all_weights['w1']=tf.Variable(xavier_init(self.n_input,self.n_hidden)) all_weights['b1']=tf.Variable(tf.zeros([self.n_hidden],dtype=tf.float32)) all_weights['w2']=tf.Variable(tf.zeros([self.n_hidden,self.n_input])) all_weights['b2']=tf.Variable(tf.zeros([self.n_input],dtype=tf.float32)) return all_weights #只让Session执行两个计算图节点:cost和训练过程的optimizer #partial_fit的功能:用一个batch数据进行训练并返回当前的损失 def partial_fit(self,X): cost,opt=self.sess.run((self.cost,self.optimizer), feed_dict={self.x:X,self.scale:self.training_scale}) return cost #自编码器训练完毕后,在测试集上对模型性能进行测评时计算cost #不会触发训练操作 def calc_total_cost(self,X): return self.sess.run(self.cost,feed_dict={self.x:X,self.scale:self.training_scale}) #提供一个接口获取抽象后的特征 def transform(self,X): return self.sess.run(self.hidden,feed_dict={self.x:X,self.scale:self.training_scale}) #高阶特征复原为原始数据 def generate(self,hidden=None): if hidden is None: hidden=np.random.normal(size=self.weights['b1']) return self.sess.run(self.reconstrunction, feed_dict={self.hidden:hidden}) #综合了transform和generate def reconstruct(self,X): return self.sess.run(self.reconstrunction,feed_dict={self.x:X,self.scale:self.training_scale}) def getWeights(self): return self.sess.run(self.weights['w1']) def getBiases(self): return self.sess.run(self.weights['b1']) mnist=input_data.read_data_sets('MNIST_data',one_hot=True) def standard_scale(X_train,X_test): preprocessor=prep.StandardScaler().fit(X_train) X_train=preprocessor.transform(X_train) X_test=preprocessor.transform(X_test) return X_train,X_test #随机获取block数据的函数(不放回抽样) def get_random_block_from_data(data,batch_size): start_index=np.random.randint(0,len(data)-batch_size) return data[start_index:(start_index+batch_size)] X_train,X_test=standard_scale(mnist.train.images,mnist.test.images) n_samples=int(mnist.train.num_examples) training_epochs=20 batch_size=128 display_step=1 #创建AGN编码器 autoencoder=AdditiveGaussianNoiseAutocoder(n_input=784,n_hidden=300,transfer_function=tf.nn.softplus, optimizer=tf.train.AdamOptimizer(learning_rate=0.001),scale=0.01) for epoch in range(training_epochs): avg_cost=0 total_batch=int(n_samples/batch_size) for i in range(total_batch): batch_xs=get_random_block_from_data(X_train,batch_size) cost=autoencoder.partial_fit(batch_xs) avg_cost+=cost/n_samples*batch_size if epoch%display_step==0: print 'Epoch:', '%04d'%(epoch+1),'cost=','{:.9f}'.format(avg_cost) print 'Total cost:'+str(autoencoder.calc_total_cost(X_test))
tensorflow 实战笔记
最新推荐文章于 2021-08-17 09:53:27 发布