第十五届“华中杯”大学生数学建模挑战赛-C 题 空气质量预测与预警-思路解析

问题一:根据附件1和附件2,对数据进行分析和处理,筛选出与 PM2.5 浓度变化有关的因素,并说明筛选出的因素对 PM2.5 浓度影响的程度。

思路提要:首先需要对给出的数据进行基本的数据处理(数据读取与查看、空缺值填补、异常值剔除等),接着需要筛选与PM2.5浓度变化有关的因素,该题实质是特征工程(筛选),常用的方法有方差过滤、卡方检验、相关系数、rf随机森林等方法,或者是基于机器学习训练的递归特征消除方法。一般会选择两至三种方法结合来进行特征筛选。

问题二:自行划分训练集和测试集,根据附件1和附件2,基于问题一构建PM2.5浓度多步预测模型,分别使用均方根误差(RMSE)对 3 步、5 步、7 步、12步预测效果进行评估,其结果请用表1格式在正文中具体给出,并对测试集及其预测结果进行可视化。同时,用该模型预测附件3所给定时间PM2.5 浓度,其结果请用表2格式在正文中具体给出

思路提要:根据第一问的提示,我们需要建立一个多元预测的时间序列机器学习模型,常用的就是LSTM多元多步预测模型。按照题意进行3/5/7/12步预测,并输出预测误差rmse即可。

问题三:构建 AQI 多步预测模型,使用均方根误差(RMSE)对建模效果进行评估,并对测试集及其预测结果进行可视化。同时,用该模型预测附件 3 所给定时间的 AQI,并给出每天空气质量的预警等级,其结果请用表 3 和表 4 格式在正文中具体给出。

思路提要<

<think>嗯,用户的问是关于华中数学建模中患者院内转运不良事件的分析预测方法。首先,我需要确定用户的需求是什么。他们可能是在准备数学建模比赛,需要相关的数据分析或数学建模方法来解决这个问。 首先,我应该考虑患者院内转运的不良事件有哪些类型,比如跌倒、设备故障、病情恶化等。然后,分析这些事件的原因,可能涉及患者因素、流程因素、设备因素和环境因素。接下来,用户可能需要知道如何收集数据,比如从电子病历、监控系统、传感器和人工记录中获取。 在分析方法方面,统计分析和预测模型是关键。描述性统计可以帮助了解事件分布,相关性分析可以找出影响因素。预测模型可能需要使用机器学习方法,比如逻辑回归、随机森林,或者时间序列分析如ARIMA。风险评估模型如ROC曲线和AHP层次分析法也可能有用。 数学建模方面,可能需要构建指标体系和优化模型,比如路径优化或资源调度。另外,模拟方法如蒙特卡罗模拟和离散事件模拟也是可行的。 然后,我需要考虑用户可能需要的相关问,比如数据预处理方法、机器学习模型对比、转运路径优化方法、实时监测系统设计、数学建模比赛中的创新点,以及伦理和隐私问。这些问可以帮助用户更全面地理解解决方案。 还要注意引用相关的文献或方法,比如在逻辑回归部分引用[^1],在随机森林引用[^2],时间序列分析引用[^3],路径优化引用[^4],模拟方法引用[^5]。这些引用需要正确对应到用户提供的参考内容,但用户提供的参考站内引用是空的,可能需要假设或使用通用引用。 最后,确保回答结构清晰,分步骤说明方法,并生成的相关问能够覆盖用户可能进一步探索的方向。同时,保持语言口语化,避免使用专业术语过多,但作为数学建模,适当的技术术语是必要的。需要检查是否符合之前的系统级指令,比如使用正确的中文和LaTeX格式,行内公式用$...$,独立公式用$$...$$,并确保LaTeX语法正确。</think>### 患者院内转运不良事件分析预测方法 #### 一、问分解研究方向 1. **事件类型**:跌倒、设备故障、病情恶化、转运延误等 2. **影响因素**: - 患者因素:年龄$A$、病情指数$S$、意识状态$C$ - 流程因素:转运时长$T$、人员配置$N$ - 设备因素:监护仪故障率$\lambda$ - 环境因素:路径复杂度$P$ #### 二、数据分析方法 $$ \text{不良事件概率} = f(A,S,C,T,N,\lambda,P) $$ 1. **数据收集**: - 电子病历(EMR) - 物联网设备实时数据流 - 视频监控时间序列数据 2. **统计分析方法**: - 卡方检验:验证分类变量关联性 - Logistic回归:建立预测模型[^1] $$ \ln\left(\frac{p}{1-p}\right) = \beta_0 + \sum_{i=1}^n \beta_iX_i $$ #### 三、预测模型构建 1. **机器学习方法**: ```python from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=100) model.fit(X_train, y_train) # X包含生命体征、转运路径等特征 ``` 2. **时间序列预测**: $$ \text{ARIMA}(p,d,q): (1-\sum_{i=1}^p \phi_iL^i)(1-L)^d y_t = (1+\sum_{i=1}^q \theta_iL^i)\varepsilon_t $$ 适用于转运延误预测[^3] #### 四、数学建模方法 1. **路径优化模型**: $$ \min \sum_{i,j} w_{ij}x_{ij} \quad \text{s.t.} \quad \sum_j x_{ij}=1 $$ 其中$w_{ij}$包含电梯等待时间、路径风险值[^4] 2. **风险评估模型**: $$ R = \alpha S + \beta T + \gamma P $$ 采用AHP层次分析法确定权重$\alpha,\beta,\gamma$ #### 五、模拟验证 使用AnyLogic构建离散事件仿真模型: ```java // 转运流程建模示例 TransportProcess.create( delayTime = triangular(5,10,15), resourcePool = nurses, priority = patient.urgencyLevel ); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lichensun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值